scholarly journals Sports Injury Modeling of the Anterior Cruciate Ligament Based on the Intelligent Finite Element Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Xia Huang

In order to solve the problem of sports injury modeling of the anterior cruciate ligament, a method based on the intelligent finite element algorithm is proposed. Considering the transverse isotropy of the ligament, this paper constructs a 3D finite element model of the knee joint based on medical image data. The same ligament constitutive equation was used to fit the parameters of stress-strain mechanical experimental curves of three different anterior cruciate ligaments, and the effects of different anterior cruciate ligament mechanical parameters on kinematics and biomechanical properties of the knee joint were compared. The experimental results show that, in models 1, 2, and 3, the maximum stress values appear in the posterolateral of the femoral attachment area of the ligament, which are 16.24 MPa, 16.36 MPa, and 22.05 MPa, respectively. However, the stress values at the tibial attachment area are 9.80, 13.8, and 13.93 MPa, respectively, and the stress values at the anterolateral part of the middle ligament are 6.36, 11.89, and 12.26 MPa, respectively, which are all smaller than those at the femoral attachment area, which also quantitatively explains the clinical phenomenon that ACL fracture often occurs in the femoral attachment area in practice. Thus, the three-dimensional finite element model of the knee joint highly simulates the structure and material properties of the knee joint. This method proves that the intelligent finite element algorithm can effectively solve the modeling problem of sports injury of the anterior cruciate ligament.

2016 ◽  
Vol 48 ◽  
pp. 888 ◽  
Author(s):  
Edward Nyman ◽  
Marcel L. Ingels ◽  
Amirhesam Amerinatanzi ◽  
Rodney K. Summers ◽  
Timothy E. Hewett ◽  
...  

Author(s):  
Achilles Vairis ◽  
Markos Petousis ◽  
George Stefanoudakis ◽  
Nectarios Vidakis ◽  
Betina Kandyla ◽  
...  

The human knee joint has a three dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Knowledge of the complex mechanical interactions of these load bearing structures is of help when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament in the knee connects the femur to the tibia and is often torn during a sudden twisting motion, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint in typical everyday activities and evaluate the differences in its response for three different states, intact, injured and reconstructed knee. Three equivalent finite element models were developed. For the reconstructed model a novel repair device developed and patented by the authors was employed. For the verification of the developed models, static load cases presented in a previous modeling work were used. Mechanical stresses calculated for the load cases studied, were very close to results presented in previous experimentally verified work, in both load distribution and maximum calculated load values.


2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Feng Xie ◽  
Liu Yang ◽  
Lin Guo ◽  
Zhi-jun Wang ◽  
Gang Dai

To establish a finite element model that reflects the geometric characteristics of the normal anterior cruciate ligament (ACL), explore the approaches to model knee joint ligaments and analyze the mechanics of the model. A healthy knee joint specimen was subjected to three-dimensional laser scanning, and then a three-dimensional finite element model for the normal ACL was established using three-dimensional finite element software. Based on the model, the loads of the ACL were simulated to analyze the stress-strain relationship and stress distribution of the ACL. Using the ABAQUS software, a three-dimensional finite element model was established. The whole model contained 22,125 nodes and 46,411 units. In terms of geometric similarity and mesh precision, this model was superior to previous finite element models for the ACL. Through the introduction of material properties, boundary conditions, and loads, finite elements were analyzed and computed successfully. The relationship between overall nodal forces and the displacement of the ACL under anterior loads of the tibia was determined. In addition, the nephogram of the ACL stress spatial distribution was obtained. A vivid, three-dimensional model of the knee joint was established rapidly by using reverse engineering technology and laser scanning. The three-dimensional finite element method can be used for the ACL biomechanics research. The method accurately simulated the ACL stress distribution with the tibia under anterior loads, and the computational results were of clinical significance.


2014 ◽  
Vol 2014 (1) ◽  
pp. 21 ◽  
Author(s):  
Achilles Vairis ◽  
Markos Petousis ◽  
Nectarios Vidakis ◽  
Betina Kandyla ◽  
Andreas-Marios Tsainis

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Minzhuo Wang

A medical imaging method based on an intelligent finite-element algorithm was proposed to diagnose anterior cruciate ligament injury modeling better. CT three-dimensional finite-element modeling was used to predict the fixation points of the anterior cruciate ligament (ACL) femoral tunnel. In this study, 19 subjects were selected, including 11 males and 8 females. There were seven cases of the left knee and 12 cases of the right knee; all patients had sports injuries. The anatomical structure of a patient’s knee was transformed into a three-dimensional model using finite-element analysis software for segmentation. The models of the tibial plateau and lateral femoral condyle were retained. The results showed that the Lysholm score difference (D) between 6 months after surgery and 1 day before surgery was used as the dependent variable in the three-dimensional finite-element model of knee joint established by the software. Pearson’s correlation analysis was performed, and the difference P < 0.05 was statistically significant. The original image of the Dicom format obtained through CT scan is preprocessed in Mimics without any format conversion, which avoids the loss of information, saves more time, and reduces the workload. The definition of “threshold” is used to complete the extraction of bone contour and realize automation. The speed and accuracy of modeling are improved.


Sign in / Sign up

Export Citation Format

Share Document