scholarly journals Simultaneous Determination of Amphenicols and Metabolites in Animal-Derived Foods Using Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xinyi Wu ◽  
Xixi Shen ◽  
Xiangyue Cao ◽  
Rongrong Nie ◽  
Haonan Zhang ◽  
...  

Amphenicols are widely used to prevent and treat animal diseases. However, amphenicol residues accumulate in livestock and poultry and harm consumers. We hypothesized that one can combine solid-phase extraction (SPE) with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to simultaneously determine amphenicols and metabolites in pork, beef, lamb, chicken, and their products and meet government regulations for maximum residue limits. We extracted crude samples with ethyl acetate and ammonia water (98:2, v/v), purified the samples with a CNW Si SPE column, defatted the samples with acetonitrile-saturated n-hexane, and then determined the resulting analytes by UHPLC-MS/MS. The limit of detection of the analytes in livestock and poultry meat was 0.03–1.50 μg/kg, and the limit of quantification was 0.05–5.00 μg/kg. Measured chloramphenicol, thiamphenicol, and florfenicol concentrations were linear over the range 0.50–50 μg/kg; and the florfenicol amine concentration was linear over the range 5.00–200 μg/kg (all with correlation coefficients >0.9990). The recovery of the spiked samples was between 72% and 120%. The intraday relative standard deviation (RSD) ranged from 1% to 9%, and the interday RSD ranged from 1% to 12%. Based on the above results, the current method is sensitive, accurate, and reproducible with the detection limits being well below the maximum residue limits as per Chinese standard GB 31650-2019, and thus, our research hypothesis could be confirmed.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yanqin Sun ◽  
Xudong Zhu ◽  
Xixi Shen ◽  
Wei Wang

Ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) has become the main method for the detection and analysis of food additives because of its good separation, high selectivity, and high sensitivity. The aim of this study was to establish an UHPLC-MS/MS method that can quickly and accurately measure the content of carrageenan in livestock and poultry meat. Chromatographic separation was performed on an ACQUITY UPLC BEH HILIC C18 column (2.1 mm × 50 mm, 1.7 μm) using a gradient elution with methanol and 0.1% (v/v) formic acid in water as a mobile phase. The quantitative analysis was executed using a triple quadrupole mass spectrometer in which electrospray ionization, multiple reaction monitoring, and negative mode were operated. The retention time was about 1.3 min for carrageenan. The carrageenan content showed a good linear relationship from 0.05 to 1.00 g/kg. The limit of detection (LOD) was 0.06 g/kg, and the limit of quantification (LOQ) was 0.18 g/kg. The standards were spiked at three levels (low, medium, and high) and were analyzed in six replicates. The recovery values of carrageenan in pork, beef, lamb, chicken, and duck meat were 82.06–111.55%, 85.43–112.50%, 89.55–116.00%, 83.80–102.15%, and 82.41–110.90%, respectively. The relative standard deviations (RSDs) were all lower than 7.51%. The developed method shows a high recovery rate and good precision and can be used for the rapid detection of carrageenan in livestock and poultry meat.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1254 ◽  
Author(s):  
Won-Gu Choi ◽  
Dong Kyun Kim ◽  
Yongho Shin ◽  
Ria Park ◽  
Yong-Yeon Cho ◽  
...  

Doxorubicin, an anthracycline antitumor antibiotic, acts as a cancer treatment by interfering with the function of DNA. Herein, liquid chromatography-tandem mass spectrometry was for the first time developed and validated for the simultaneous determination of doxorubicin and its major metabolites doxorubicinol, doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone in mouse plasma. The liquid–liquid extraction of a 10 μL mouse plasma sample with chloroform:methanol (4:1, v/v) and use of the selected reaction monitoring mode led to less matrix effect and better sensitivity. The lower limits of quantification levels were 0.5 ng/mL for doxorubicin, 0.1 ng/mL for doxorubicinol, and 0.01 ng/mL for doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone. The standard curves were linear over the range of 0.5–200 ng/mL for doxorubicin; 0.1–200 ng/mL for doxorubicinol; and 0.01–50 ng/mL for doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone in mouse plasma. The intra and inter-day relative standard deviation and relative errors for doxorubicin and its four metabolites at four quality control concentrations were 0.9–13.6% and –13.0% to 14.9%, respectively. This method was successfully applied to the pharmacokinetic study of doxorubicin and its metabolites after intravenous administration of doxorubicin at a dose of 1.3 mg/kg to female BALB/c nude mice.


Sign in / Sign up

Export Citation Format

Share Document