scholarly journals Multi-variable conformable fractional calculus

Filomat ◽  
2018 ◽  
Vol 32 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Nazlı Gözütok ◽  
Uğur Gözütok

Conformable fractional derivative is introduced by the authors Khalil et al. In this study we develop their concept and introduce multi-variable conformable derivative for a vector valued function with several variables

2018 ◽  
Vol 22 (Suppl. 1) ◽  
pp. 7-14 ◽  
Author(s):  
Mustafa Bayram ◽  
Veysel Hatipoglu ◽  
Sertan Alkan ◽  
Sebahat Das

The aim of this work is to determine an approximate solution of a fractional order Volterra-Fredholm integro-differential equation using by the Sinc-collocation method. Conformable derivative is considered for the fractional derivatives. Some numerical examples having exact solutions are approximately solved. The comparisons of the exact and the approximate solutions of the examples are presented both in tables and graphical forms.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mohammed K. A. Kaabar ◽  
Francisco Martínez ◽  
Inmaculada Martínez ◽  
Zailan Siri ◽  
Silvestre Paredes

New investigation on the conformable version (CoV) of multivariable calculus is proposed. The conformable derivative (CoD) of a real-valued function (RVF) of several variables (SVs) and all related properties are investigated. An extension to vector-valued functions (VVFs) of several real variables (SRVs) is studied in this work. The CoV of chain rule (CR) for functions of SVs is also introduced. At the end, the CoV of implicit function theorem (IFThm) for SVs is established. All results in this work can be potentially applied in studying various modeling scenarios in physical oceanography such as Stommel’s box model of thermohaline circulation and other related models where all our results can provide a new analysis and computational tool to investigate these models or their modified formulations.


Filomat ◽  
2019 ◽  
Vol 33 (6) ◽  
pp. 1541-1550
Author(s):  
Uğur Gözütok ◽  
Hüsnü Çoban ◽  
Yasemin Sağıroğlu

Conformable fractional derivative is introduced by the authors Khalil at al in 2014. In this study, we investigate the frenet frame with respect to conformable fractional derivative. Curvature and torsion of a conformable curve are defined and the geometric interpretation of these two functions is studied. Also, fundamental theorem of curves is expressed for the conformable curves and an example of the curve corresponding to a fractional differential equation is given.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Feng Gao ◽  
Chunmei Chi

In this paper, we made improvement on the conformable fractional derivative. Compared to the original one, the improved conformable fractional derivative can be a better replacement of the classical Riemann-Liouville and Caputo fractional derivative in terms of physical meaning. We also gave the definition of the corresponding fractional integral and illustrated the applications of the improved conformable derivative to fractional differential equations by some examples.


2016 ◽  
Vol 14 (1) ◽  
pp. 1122-1124 ◽  
Author(s):  
Ricardo Almeida ◽  
Małgorzata Guzowska ◽  
Tatiana Odzijewicz

AbstractIn this short note we present a new general definition of local fractional derivative, that depends on an unknown kernel. For some appropriate choices of the kernel we obtain some known cases. We establish a relation between this new concept and ordinary differentiation. Using such formula, most of the fundamental properties of the fractional derivative can be derived directly.


2020 ◽  
pp. 1-13
Author(s):  
SEBASTIÁN PAVEZ-MOLINA

Abstract Let $(X,T)$ be a topological dynamical system. Given a continuous vector-valued function $F \in C(X, \mathbb {R}^{d})$ called a potential, we define its rotation set $R(F)$ as the set of integrals of F with respect to all T-invariant probability measures, which is a convex body of $\mathbb {R}^{d}$ . In this paper we study the geometry of rotation sets. We prove that if T is a non-uniquely ergodic topological dynamical system with a dense set of periodic measures, then the map $R(\cdot )$ is open with respect to the uniform topologies. As a consequence, we obtain that the rotation set of a generic potential is strictly convex and has $C^{1}$ boundary. Furthermore, we prove that the map $R(\cdot )$ is surjective, extending a result of Kucherenko and Wolf.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Feng Liu

Abstract In this note we study the rough singular integral $$ T_{\varOmega }f(x)=\mathrm{p.v.} \int _{\mathbb{R}^{n}}f(x-y)\frac{\varOmega (y/ \vert y \vert )}{ \vert y \vert ^{n}}\,dy, $$ T Ω f ( x ) = p . v . ∫ R n f ( x − y ) Ω ( y / | y | ) | y | n d y , where $n\geq 2$ n ≥ 2 and Ω is a function in $L\log L(\mathrm{S} ^{n-1})$ L log L ( S n − 1 ) with vanishing integral. We prove that $T_{\varOmega }$ T Ω is bounded on the mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}( \mathbb{R}^{n})$ L | x | p L θ p ˜ ( R n ) , on the vector-valued mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}(\mathbb{R}^{n},\ell ^{\tilde{p}})$ L | x | p L θ p ˜ ( R n , ℓ p ˜ ) and on the vector-valued function spaces $L^{p}(\mathbb{R}^{n}, \ell ^{\tilde{p}})$ L p ( R n , ℓ p ˜ ) if $1<\tilde{p}\leq p<\tilde{p}n/(n-1)$ 1 < p ˜ ≤ p < p ˜ n / ( n − 1 ) or $\tilde{p}n/(\tilde{p}+n-1)< p\leq \tilde{p}<\infty $ p ˜ n / ( p ˜ + n − 1 ) < p ≤ p ˜ < ∞ . The same conclusions hold for the well-known Riesz transforms and directional Hilbert transforms. It should be pointed out that our proof is based on the Calderón–Zygmund’s rotation method.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Choonkil Park ◽  
R. I. Nuruddeen ◽  
Khalid K. Ali ◽  
Lawal Muhammad ◽  
M. S. Osman ◽  
...  

Abstract This paper aims to investigate the class of fifth-order Korteweg–de Vries equations by devising suitable novel hyperbolic and exponential ansatze. The class under consideration is endowed with a time-fractional order derivative defined in the conformable fractional derivative sense. We realize various solitons and solutions of these equations. The fractional behavior of the solutions is studied comprehensively by using 2D and 3D graphs. The results demonstrate that the methods mentioned here are more effective in solving problems in mathematical physics and other branches of science.


2014 ◽  
Vol 23 (09) ◽  
pp. 1450044 ◽  
Author(s):  
Abdullah Engin Çalik ◽  
Hüseyin Şirin ◽  
Hüseyin Ertik ◽  
Buket Öder ◽  
Mürsel Şen

In this paper, the half-life values of spherical proton emitters such as Sb , Tm , Lu , Ta , Re , Ir , Au , Tl and Bi have been calculated within the framework of fractional calculus. Nuclear decay equation, related to this phenomenon, has been resolved by using Caputo fractional derivative. The order of fractional derivative μ being considered is 0 < μ ≤ 1, and characterizes the fractality of time. Half-life values have been calculated equivalent with empirical ones. The dependence of fractional derivative order μ on the nuclear structure has also been investigated.


Sign in / Sign up

Export Citation Format

Share Document