scholarly journals Financial Risk Early-Warning Model Based on Kernel Principal Component Analysis in Public Hospitals

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Manxiang Qu ◽  
Yuexin Li

Public hospitals are facing the dual pressure of coping with external medical market competition and performing public health duties. Due to the influence of various risk factors, public hospitals are facing increasing financial risks. How to effectively prevent and control financial risks and maintain the normal operation and sustainable development of the hospital is a very important topic that needs to be studied in the development of public hospitals. Because the traditional principal component analysis method only pays attention to the global structural features and ignores the local structural features, a financial risk early-warning model based on improved kernel principal component analysis in public hospitals is proposed to improve the ability of risk assessment. The core ideas of the method in this paper for financial risk forecasting are as follows: the nonlinear features of the financial data are firstly extracted under different conditions, and then the feature matrix and the optimal feature vector are calculated to construct the distance statistics so as to determines the threshold by kernel density estimation; finally the Fisher discriminant analysis is used for similarity measurement to identify the risk types. Through experiments on the financial data of a number of public hospitals and listed companies, the experimental results verify the feasibility and effectiveness of the method used in this paper for financial risk analysis. This further shows that this research has a certain display significance.

2021 ◽  
Vol 11 (14) ◽  
pp. 6370
Author(s):  
Elena Quatrini ◽  
Francesco Costantino ◽  
David Mba ◽  
Xiaochuan Li ◽  
Tat-Hean Gan

The water purification process is becoming increasingly important to ensure the continuity and quality of subsequent production processes, and it is particularly relevant in pharmaceutical contexts. However, in this context, the difficulties arising during the monitoring process are manifold. On the one hand, the monitoring process reveals various discontinuities due to different characteristics of the input water. On the other hand, the monitoring process is discontinuous and random itself, thus not guaranteeing continuity of the parameters and hindering a straightforward analysis. Consequently, further research on water purification processes is paramount to identify the most suitable techniques able to guarantee good performance. Against this background, this paper proposes an application of kernel principal component analysis for fault detection in a process with the above-mentioned characteristics. Based on the temporal variability of the process, the paper suggests the use of past and future matrices as input for fault detection as an alternative to the original dataset. In this manner, the temporal correlation between process parameters and machine health is accounted for. The proposed approach confirms the possibility of obtaining very good monitoring results in the analyzed context.


2009 ◽  
Vol 147-149 ◽  
pp. 588-593 ◽  
Author(s):  
Marcin Derlatka ◽  
Jolanta Pauk

In the paper the procedure of processing biomechanical data has been proposed. It consists of selecting proper noiseless data, preprocessing data by means of model’s identification and Kernel Principal Component Analysis and next classification using decision tree. The obtained results of classification into groups (normal and two selected pathology of gait: Spina Bifida and Cerebral Palsy) were very good.


Sign in / Sign up

Export Citation Format

Share Document