scholarly journals Terminal Value Problem for Implicit Katugampola Fractional Differential Equations in b -Metric Spaces

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Salim Krim ◽  
Saïd Abbas ◽  
Mouffak Benchohra ◽  
Erdal Karapinar

This manuscript deals with a class of Katugampola implicit fractional differential equations in b -metric spaces. The results are based on the α − φ -Geraghty type contraction and the fixed point theory. We express an illustrative example.

Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 672 ◽  
Author(s):  
Mouffak Benchohra ◽  
Soufyane Bouriah ◽  
Juan J. Nieto

We present in this work the existence results and uniqueness of solutions for a class of boundary value problems of terminal type for fractional differential equations with the Hilfer–Katugampola fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Banach contraction principle and Krasnoselskii’s fixed point theorem. We illustrate our main findings, with a particular case example included to show the applicability of our outcomes.


2020 ◽  
Vol 61 ◽  
pp. C15-C30
Author(s):  
Charles P Stinson ◽  
Saleh S Almuthaybiri ◽  
Christopher C Tisdell

The purpose of this work is to advance the current state of mathematical knowledge regarding fixed point theorems of functions. Such ideas have historically enjoyed many applications, for example, to the qualitative and quantitative understanding of differential, difference and integral equations. Herein, we extend an established result due to Rus [Studia Univ. Babes-Bolyai Math., 22, 1977, 40–42] that involves two metrics to ensure wider classes of functions admit a unique fixed point. In contrast to the literature, a key strategy herein involves placing assumptions on the iterations of the function under consideration, rather than on the function itself. In taking this approach we form new advances in fixed point theory under two metrics and establish interesting connections between previously distinct theorems, including those of Rus [Studia Univ. Babes-Bolyai Math., 22, 1977, 40–42], Caccioppoli [Rend. Acad. Naz. Linzei. 11, 1930, 31–49] and Bryant [Am. Math. Month. 75, 1968, 399–400]. Our results make progress towards a fuller theory of fixed points of functions under two metrics. Our work lays the foundations for others to potentially explore applications of our new results to form existence and uniqueness of solutions to boundary value problems, integral equations and initial value problems. References Almuthaybiri, S. S. and C. C. Tisdell. ``Global existence theory for fractional differential equations: New advances via continuation methods for contractive maps''. Analysis, 39(4):117–128, 2019. doi:10.1515/anly-2019-0027 Almuthaybiri, S. S. and C. C. Tisdell. ``Sharper existence and uniqueness results for solutions to third-order boundary value problems, mathematical modelling and analysis''. Math. Model. Anal. 25(3):409–420, 2020. doi:10.3846/mma.2020.11043 Banach, S. ``Sur les operations dans les ensembles abstraits et leur application aux equations integrales''. Fund. Math., 3:133–181 1922. doi:10.4064/fm-3-1-133-181 Brouwer, L. E. J. ``Ueber Abbildungen von Mannigfaltigkeiten''. Math. Ann. 71:598, 1912. doi:10.1007/BF01456812 Bryant, V. W. ``A remark on a fixed point theorem for iterated mappings'' Am. Math. Month. 75: 399–400, 1968. doi:10.2307/2313440 Caccioppoli, R. ``Un teorema generale sullesistenza de elemente uniti in una transformazione funzionale''. Rend. Acad. Naz. Linzei. 11:31–49, 1930. Goebel, K., and W. A. Kirk. Topics in metric fixed point theory. Cambridge University Press, 1990, doi:10.1017/CBO9780511526152 Leray, J., and J. Schauder. ``Topologie et equations fonctionnelles''. Ann. Sci. Ecole Norm. Sup. 51:45–78, 1934. doi:10.24033/asens.836 O'Regan, D. and R. Precup. Theorems of Leray–Schauder type and applications, Series in Mathematical Analysis and Applications, Vol. 3. CRC Press, London, 2002. doi:10.1201/9781420022209 Rus, I. A. ``On a fixed point theorem of Maia''. Studia Univ. Babes-Bolyai Math. 22:40–42, 1977. Schaefer, H. H. ``Ueber die Methode der a priori-Schranken''. Math. Ann. 129:415–416, 1955. doi:10.1007/bf01362380 Tisdell, C. C. ``When do fractional differential equations have solutions that are bounded by the Mittag-Leffler function?'' Fract. Calc. Appl. Anal. 18(3):642–650, 2015. doi:10.1515/fca-2015-0039 Tisdell, C. C. ``A note on improved contraction methods for discrete boundary value problems.'' J. Diff. Eq. Appl. 18(10):1773–1777, 2012. doi:10.1080/10236198.2012.681781 Tisdell, C. C. ``On the application of sequential and fixed-point methods to fractional differential equations of arbitrary order.'' J. Int. Eq. Appl. 24(2):283–319, 2012. doi:10.1216/JIE-2012-24-2-283 Ehrnstrom, M., Tisdell, C. C. and E. Wahlen. ``Asymptotic integration of second-order nonlinear difference equations.'' Glasg. Math. J. 53(2):223–243, 2011. doi:10.1017/S0017089510000650 Erbe, L., A. Peterson and C. C. Tisdell. ``Basic existence, uniqueness and approximation results for positive solutions to nonlinear dynamic equations on time scales.'' Nonlin. Anal. 69(7):2303–2317, 2008. doi:10.1016/j.na.2007.08.010 Tisdell, C. C. and A. Zaidi. ``Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling.'' Nonlin. Anal. 68(11):3504–3524, 2008. doi:10.1016/j.na.2007.03.043 Tisdell, C. C. ``Improved pedagogy for linear differential equations by reconsidering how we measure the size of solutions.'' Int.. J. Math. Ed. Sci. Tech. 48(7):1087–1095, 2017. doi:10.1080/0020739X.2017.1298856 Tisdell, C. C. ``On Picard's iteration method to solve differential equations and a pedagogical space for otherness.'' Int. J. Math. Ed. Sci. Tech. 50(5):788–799, 2019. doi:10.1080/0020739X.2018.1507051 Zeidler, E. Nonlinear functional analysis and its applications. Springer-Verlag, New York, 1986. doi:10.1007/978-1-4612-4838-5


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Rozi Gul ◽  
Muhammad Sarwar ◽  
Kamal Shah ◽  
Thabet Abdeljawad ◽  
Fahd Jarad

This article studies a class of implicit fractional differential equations involving a Caputo-Fabrizio fractional derivative under Dirichlet boundary conditions (DBCs). Using classical fixed-point theory techniques due to Banch’s and Krasnoselskii, a qualitative analysis of the concerned problem for the existence of solutions is established. Furthermore, some results about the stability of the Ulam type are also studied for the proposed problem. Some pertinent examples are given to justify the results.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Ahmed Alsaedi ◽  
Bashir Ahmad ◽  
Afrah Assolami

We study an antiperiodic boundary value problem of nonlinear fractional differential equations of orderq∈(4,5]. Some existence results are obtained by applying some standard tools of fixed-point theory. We show that solutions for lower-order anti-periodic fractional boundary value problems follow from the solution of the problem at hand. Our results are new and generalize the existing results on anti-periodic fractional boundary value problems. The paper concludes with some illustrating examples.


2020 ◽  
Vol 6 (2) ◽  
pp. 218-230
Author(s):  
Fouzia Bekada ◽  
Saïd Abbas ◽  
Mouffak Benchohra

AbstractThis article deals with some existence of random solutions and Ulam stability results for a class of Caputo-Fabrizio random fractional differential equations with boundary conditions in Banach spaces. Our results are based on the fixed point theory and random operators. Two illustrative examples are presented in the last section.


2021 ◽  
Vol 19 (1) ◽  
pp. 760-772
Author(s):  
Ahmed Alsaedi ◽  
Bashir Ahmad ◽  
Badrah Alghamdi ◽  
Sotiris K. Ntouyas

Abstract We study a nonlinear system of Riemann-Liouville fractional differential equations equipped with nonseparated semi-coupled integro-multipoint boundary conditions. We make use of the tools of the fixed-point theory to obtain the desired results, which are well-supported with numerical examples.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abdelkrim Salim ◽  
Mouffak Benchohra ◽  
Erdal Karapınar ◽  
Jamal Eddine Lazreg

Abstract In this manuscript, we examine the existence and the Ulam stability of solutions for a class of boundary value problems for nonlinear implicit fractional differential equations with instantaneous impulses in Banach spaces. The results are based on fixed point theorems of Darbo and Mönch associated with the technique of measure of noncompactness. We provide some examples to indicate the applicability of our results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ahmed Alsaedi ◽  
Soha Hamdan ◽  
Bashir Ahmad ◽  
Sotiris K. Ntouyas

AbstractThis paper is concerned with the solvability of coupled nonlinear fractional differential equations of different orders supplemented with nonlocal coupled boundary conditions on an arbitrary domain. The tools of the fixed point theory are applied to obtain the criteria ensuring the existence and uniqueness of solutions of the problem at hand. Examples illustrating the main results are presented.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2032
Author(s):  
Sumaiya Tasneem Zubair ◽  
Kalpana Gopalan ◽  
Thabet Abdeljawad ◽  
Bahaaeldin Abdalla

The focus of this research article is to investigate the notion of fuzzy extended hexagonal b-metric spaces as a technique of broadening the fuzzy rectangular b-metric spaces and extended fuzzy rectangular b-metric spaces as well as to derive the Banach fixed point theorem and several novel fixed point theorems with certain contraction mappings. The analog of hexagonal inequality in fuzzy extended hexagonal b-metric spaces is specified as follows utilizing the function b(c,d): mhc,d,t+s+u+v+w≥mhc,e,tb(c,d)∗mhe,f,sb(c,d)∗mhf,g,ub(c,d)∗mhg,k,vb(c,d)∗mhk,d,wb(c,d) for all t,s,u,v,w>0 and c≠e,e≠f,f≠g,g≠k,k≠d. Further to that, this research attempts to provide a feasible solution for the Caputo type nonlinear fractional differential equations through effective applications of our results obtained.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
O. Zentar ◽  
M. Ziane ◽  
S. Khelifa

Abstract The purpose of this work is to investigate the existence of solutions for a system of random differential equations involving the Riemann–Liouville fractional derivative. The existence result is established by means of a random abstract formulation to Sadovskii’s fixed point theorem principle [A. Baliki, J. J. Nieto, A. Ouahab and M. L. Sinacer, Random semilinear system of differential equations with impulses, Fixed Point Theory Appl. 2017 2017, Paper No. 27] combined with a technique based on vector-valued metrics and convergent to zero matrices. An example is also provided to illustrate our result.


Sign in / Sign up

Export Citation Format

Share Document