scholarly journals AdaCN: An Adaptive Cubic Newton Method for Nonconvex Stochastic Optimization

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yan Liu ◽  
Maojun Zhang ◽  
Zhiwei Zhong ◽  
Xiangrong Zeng

In this work, we introduce AdaCN, a novel adaptive cubic Newton method for nonconvex stochastic optimization. AdaCN dynamically captures the curvature of the loss landscape by diagonally approximated Hessian plus the norm of difference between previous two estimates. It only requires at most first order gradients and updates with linear complexity for both time and memory. In order to reduce the variance introduced by the stochastic nature of the problem, AdaCN hires the first and second moment to implement and exponential moving average on iteratively updated stochastic gradients and approximated stochastic Hessians, respectively. We validate AdaCN in extensive experiments, showing that it outperforms other stochastic first order methods (including SGD, Adam, and AdaBound) and stochastic quasi-Newton method (i.e., Apollo), in terms of both convergence speed and generalization performance.

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Zhuqing Gui ◽  
Chunyan Hu ◽  
Zhibin Zhu

Firstly, we give the Karush-Kuhn-Tucker (KKT) optimality condition of primal problem and introduce Jordan algebra simply. On the basis of Jordan algebra, we extend smoothing Fischer-Burmeister (F-B) function to Jordan algebra and make the complementarity condition smoothing. So the first-order optimization condition can be reformed to a nonlinear system. Secondly, we use the mixed line search quasi-Newton method to solve this nonlinear system. Finally, we prove the globally and locally superlinear convergence of the algorithm.


Author(s):  
Jacob Stegenga

Medical scientists employ ‘quality assessment tools’ to assess evidence from medical research, especially from randomized trials. These tools are designed to take into account methodological details of studies, including randomization, subject allocation concealment, and other features of studies deemed relevant to minimizing bias. There are dozens of such tools available. They differ widely from each other, and empirical studies show that they have low inter-rater reliability and low inter-tool reliability. This is an instance of a more general problem called here the underdetermination of evidential significance. Disagreements about the quality of evidence can be due to different—but in principle equally good—weightings of the methodological features that constitute quality assessment tools. Thus, the malleability of empirical research in medicine is deep: in addition to the malleability of first-order empirical methods, such as randomized trials, there is malleability in the tools used to evaluate first-order methods.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
B. Borsos ◽  
János Karátson

Abstract The goal of this paper is to present various types of iterative solvers: gradient iteration, Newton’s method and a quasi-Newton method, for the finite element solution of elliptic problems arising in Gao type beam models (a geometrical type of nonlinearity, with respect to the Euler–Bernoulli hypothesis). Robust behaviour, i.e., convergence independently of the mesh parameters, is proved for these methods, and they are also tested with numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document