scholarly journals Classification and Prediction of Bee Honey Indirect Adulteration Using Physiochemical Properties Coupled with K-Means Clustering and Simulated Annealing-Artificial Neural Networks (SA-ANNs)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Majdi Al-Mahasneh ◽  
Muhammad Al-U’datt ◽  
Taha Rababah ◽  
Mohamad Al-Widyan ◽  
Aseel Abu Kaeed ◽  
...  

The higher demand and limited availability of honey led to different forms of honey adulteration. Honey adulteration is either direct by addition of various syrups to natural honey or indirect by feeding honey bees with sugar syrups. Therefore, a need has emerged for reliable and cost-effective quality control methods to detect honey adulteration in order to ensure both safety and quality of honey. In this study, honey is adulterated by feeding honey bees with various proportions of sucrose syrup (0 to 100%). Various physiochemical properties of the adulterated honey are studied including sugar profile, pH, acidity, moisture, and color. The results showed that increasing sucrose syrup in the feed resulted in a decrease in glucose and fructose contents significantly, from 33.4 to 29.1% and 45.2 to 35.9%, respectively. Sucrose content, however, increased significantly from 0.19 to 1.8%. The pH value increased significantly from 3.04 to 4.63 with increase in sucrose feed. Acidity decreased slightly but nonsignificantly with increase in sucrose feed and varied between 7.0 and 4.00 meq/kg for 0% and 100% sucrose, respectively. Honey’s lightness (L value) also increased significantly from 59.3 to 68.84 as sucrose feed increased. Other color parameters were not significantly changed by sucrose feed. K-means clustering is used to classify the level of honey adulteration by using the above physiological properties. The classification results showed that both glucose content and total sugar content provided 100% accurate classification while pH values provided the worst results with 52% classification accuracy. To further predict the percent honey adulteration, simulated annealing coupled with artificial neural networks (SA-ANNs) was used with sugar profile as an input. RBF-ANN was found to provide the best prediction results with SSE = 0.073, RE = 0.021, and overall R2 = 0.992. It is concluded that honey sugar profile can provide an accurate and reliable tool for detecting indirect honey adulteration by sucrose solution.

Author(s):  
H. Bazargan ◽  
H. Bahai ◽  
F. Aryana ◽  
S. F. Yasseri

The aim of this work is to simulate the 3-houly mean zero-up-crossing wave periods (Tzs) of the sea-states of a future period for a location in the North East Pacific. Seven multi-layer artificial neural networks (ANNs) were trained with simulated annealing algorithm. The output of each ANN was used for estimating each of the 7 parameters of a new distribution, described in Appendix A, called hepta-parameter spline proposed for the conditional distribution of the Tz given some significant wave heights and mean zero-up-crossing wave periods. After estimating the parameters of the conditional distributions, the Tzs have been forecasted from the hepta-parameter spline distributions corresponding to the Tzs of the period.


Sign in / Sign up

Export Citation Format

Share Document