scholarly journals Tracing Mechanism of Sports Competition Pressure Based on Backpropagation Neural Network

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huayu Zhao ◽  
Shaonan Liu

Through the overall situation of athletes’ competition pressure, the pressure level of participating athletes can be understood and revealed. Analyzing the sources of stress and influencing factors of athletes can find measures to relieve and reduce stress and provide theoretical reference for the regulation of athletes’ competition pressure. Based on genetic algorithm and neural network theory, this paper proposes a method of tracing the sports competition pressure based on genetic algorithm backpropagation (BP) neural network to solve the problem that traditional neural network learning algorithm is slow and easy to fall into local minimum. There is no significant difference between male and female athletes in the level of competition pressure. Athletes have the same training methods and the same goals, and the competition pressure tends to be the same, with no obvious difference; athletes with different educational backgrounds have no significant differences in training, academics, sports injuries, interpersonal relationships, social expectations, and evaluations. Due to the particularity of the stage, the competition pressure of fourth-year undergraduate and third-year masters is significantly higher than that of other grades. The number of athletes participating in college table tennis tournaments has very significant differences in competition dimensions. There is significant difference in training and self-expectation dimension difference. The competition pressure of athletes who participated in the college table tennis championship for the first time was significantly higher than that of athletes who participated repeatedly. There were significant differences between athletes before and after adapting to the venue. Before adapting to the venue, the competition pressure of athletes is generally greater. After adapting to the venue, the competition pressure of athletes has been relieved.


2013 ◽  
Vol 717 ◽  
pp. 563-567 ◽  
Author(s):  
Wen Chun Chang ◽  
Cheng Chen

BP network model has become one of the important neural network model, is used in many fields, but it has some defects. As from a mathematical perspective, it is a nonlinear optimization problem, which inevitably has the local minima problem; BP neural network learning algorithm has slow convergence rate, and the convergence speed and the initial weights of choice; network structure, namely the hidden layer nodes selection is still no theory until, but according to the experience. Based on the BP algorithm the local extreme values, considering the genetic algorithm and BP algorithm is combined with, on the BP neural network optimization. Neural network using genetic algorithm optimization mainly includes three aspects: the connection weights of evolution, evolutionary network structure, learning the rules of evolution.



A genetic algorithm is proposed to us to prevent a local minimum defect when using the BP neural network learning algorithm. The genetic algorithm is first used to optimize the weight and threshold of the BP neural network, and then obtained values are used to optimize the BP neural network. Optimized network performance is estimated using simulation data. The results of numerical simulations show that the BP neural network optimized by the genetic algorithm can effectively eliminate a local minimum defect, which is easy to find in the original BP neural network, and has the advantages of fast convergence rate and high accuracy. Keywords BP neural network; genetic algorithm; local minimum defect; optimization



2013 ◽  
Vol 422 ◽  
pp. 221-225
Author(s):  
Wen Chun Chang ◽  
Cheng Chen

BP network model has become one of the important neural network model which is used in many fields, but it has some defects. From a mathematical perspective, it is a nonlinear optimization problem, which inevitably has the local minima problem; BP neural network learning algorithm has slow convergence rate, and the convergence speed and the initial weights of choice; network structure, namely the hidden layer nodes selection still has no theory, but according to the experience. Based on the BP algorithm local extreme values, considering the genetic algorithm, combining with BP algorithm, the BP neural network optimization is achieved. Neural network using genetic algorithm optimization mainly includes three aspects: the connection weights of evolution, evolutionary network structure, learning the rules of evolution.



1990 ◽  
Vol 29 (11) ◽  
pp. 1591 ◽  
Author(s):  
Gordon R. Little ◽  
Steven C. Gustafson ◽  
Robert A. Senn


2000 ◽  
Author(s):  
Magdy Mohamed Abdelhameed ◽  
Sabri Cetinkunt

Abstract Cerebellar model articulation controller (CMAC) is a useful neural network learning technique. It was developed two decades ago but yet lacks an adequate learning algorithm, especially when it is used in a hybrid- type controller. This work is intended to introduce a simulation study for examining the performance of a hybrid-type control system based on the conventional learning algorithm of CMAC neural network. This study showed that the control system is unstable. Then a new adaptive learning algorithm of a CMAC based hybrid- type controller is proposed. The main features of the proposed learning algorithm, as well as the effects of the newly introduced parameters of this algorithm have been studied extensively via simulation case studies. The simulation results showed that the proposed learning algorithm is a robust in stabilizing the control system. Also, this proposed learning algorithm preserved all the known advantages of the CMAC neural network. Part II of this work is dedicated to validate the effectiveness of the proposed CMAC learning algorithm experimentally.





Sign in / Sign up

Export Citation Format

Share Document