scholarly journals Human Chondrocytes from Human Adipose Tissue-Derived Mesenchymal Stem Cells Seeded on a Dermal-Derived Collagen Matrix Sheet: Our Preliminary Results for a Ready to Go Biotechnological Cartilage Graft in Clinical Practice

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Quan Tran Dang ◽  
Thao Duy Huynh ◽  
Francesco Inchingolo ◽  
Gianna Dipalma ◽  
Alessio Danilo Inchingolo ◽  
...  

Background. The articular cartilage is unique in that it contains only a single type of cell and shows poor ability for spontaneous healing. Cartilage tissue engineering which uses mesenchymal stem cells (MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) is considered an attractive treatment for cartilage lesions and osteoarthritis. The establishment of cartilage regenerative medicine is an important clinical issue, but the search for cell sources able to restore cartilage integrity proves to be challenging. The aim of this study was to create cartilage grafts from the combination of AT-MSCs and collagen substrates. Methods. Mesenchymal stem cells were obtained from human donors’ adipose tissue, and collagen scaffold, obtained from human skin and cleaned from blood vessels, adipose tissues, and debris, which only preserve dermis and epidermis, were seeded and cultured on collagen substrates and differentiated to chondrocytes. The obtained chondrocyte extracellular matrix of cartilage was then evaluated for the expression of chondrocyte-/cartilage-specific markers, the Cartilage Oligomeric Matrix Protein (COMP), collagen X, alpha-1 polypeptide (COL10A1), and the Collagen II, Human Tagged ORF Clone (COL2A1) by using the reverse transcription polymerase chain reaction (RT-PCR). Results. Our findings have shown that the dermal collagen may exert important effects on the quality of in vitro expanded chondrocytes, leading in this way that the influence of collagen skin matrix helps to produce highly active and functional chondrocytes for long-term cartilage tissue regeneration. Conclusion. This research opens up the possibility of generating cartilage grafts with the precise purpose of improving the existing limitation in current clinical procedures.


Author(s):  
Natalia Martins ◽  
Alessandra Arcoverde ◽  
Juliana Lott ◽  
Viviane Silva ◽  
Dawidson Gomes ◽  
...  


2012 ◽  
Vol 20 ◽  
pp. S279
Author(s):  
S. Díaz-Prado ◽  
E. Muiños-López ◽  
T. Hermida-Gómez ◽  
I. Fuentes-Boquete ◽  
J. Buján ◽  
...  


Author(s):  
Minwook Kim ◽  
Jason A. Burdick ◽  
Robert L. Mauck

Mesenchymal stem cells (MSCs) are an attractive cell type for cartilage tissue engineering in that they can undergo chondrogenesis in a variety of 3D contexts [1]. Focused efforts in MSC-based cartilage tissue engineering have recently culminated in the formation of biologic materials possessing biochemical and functional mechanical properties that match that of the native tissue [2]. These approaches generally involve the continuous or intermittent application of pro-chondrogenic growth factors during in vitro culture. For example, in one recent study, we showed robust construct maturation in MSC-seeded hyaluronic acid (HA) hydrogels transiently exposed to high levels of TGF-β3 [3]. Despite the promise of this approach, MSCs are a multipotent cell type and retain a predilection towards hypertrophic phenotypic conversion (i.e., bone formation) when removed from a pro-chondrogenic environment (e.g., in vivo implantation). Indeed, even in a chondrogenic environment, many MSC-based cultures express pre-hypertrophic markers, including type X collagen, MMP13, and alkaline phosphatase [4]. To address this issue, recent studies have investigated co-culture of human articular chondrocytes and MSCs in both pellet and hydrogel environments. Chondrocytes appear to enhance the initial efficiency of MSC chondrogenic conversion, as well as limit hypertrophic changes in some instances (potentially via secretion of PTHrP and/or other factors) [5–7]. While these findings are intriguing, articular cartilage has a unique depth-dependent morphology including zonal differences in chondrocyte identity. Ng et al. showed that zonal chondrocytes seeded in a bi-layered agarose hydrogel construct can recreate depth-dependent cellular and mechanical heterogeneity, suggesting that these identities are retained with transfer to 3D culture systems [8]. Further, Cheng et al. showed that differences in matrix accumulation and hypertrophy in zonal chondrocytes was controlled by bone morphogenic protein [9]. To determine whether differences in zonal chondrocyte identity influences MSC fate decisions, we evaluated functional properties and phenotypic stability in photocrosslinked hyaluronic acid (HA) hydrogels using distinct, zonal chondrocyte cell fractions co-cultured with bone marrow derived MSCs.



Author(s):  
Minwook Kim ◽  
Isaac E. Erickson ◽  
Jason A. Burdick ◽  
George R. Dodge ◽  
Robert L. Mauck

Articular cartilage has a limited regenerative capacity, and there exist no methodologies to restore structure and function after damage or degeneration. This has focused intense work on cell-based therapies for cartilage repair, with considerable literature demonstrating that chondrocytes in vitro and in vivo can generate cartilage-like tissue replacements. However, use of primary cells is limited by the amount and quality of autologous donor cells and tissue. Multipotential mesenchymal stem cells (MSCs) derived from bone marrow offer an alternative cell source for cartilage tissue engineering. MSCs are easily accessible and expandable in culture, and differentiate towards a chondrocyte-like phenotype with exposure to TGF-β [1]. For example, we have shown that bovine MSCs undergo chondrogenic differentiation and mechanical maturation in agarose, self-assembling peptide, and photocrosslinkable hyaluronic acid (HA) hydrogels [2]. HA hydrogels are particularly advantageous as they are biologically relevant and easily modified to generate a range of hydrogel properties [3]. Indeed, bovine MSCs show a strong dependence of functional outcomes on the macromer density of the HA gel [4]. To further the clinical application of this material, the purpose of this study was to investigate functional chondrogenesis of human MSCs in HA compared to agarose hydrogels. To carry out this study, juvenile bovine and human MSCs were encapsulated and cultured in vitro in HA and agarose hydrogels, and cell viability, biochemical, biomechanical, and histological properties were evaluated over 4 weeks of culture.





2013 ◽  
Vol 21 ◽  
pp. S310 ◽  
Author(s):  
C. Sanjurjo-Rodríguez ◽  
A.H. Martínez-Sánchez ◽  
E. Muiños López ◽  
T. Hermida Gómez ◽  
I.M. Fuentes Boquete ◽  
...  


Biomaterials ◽  
2005 ◽  
Vol 26 (34) ◽  
pp. 7082-7094 ◽  
Author(s):  
Yongzhong Wang ◽  
Ung-Jin Kim ◽  
Dominick J. Blasioli ◽  
Hyeon-Joo Kim ◽  
David L. Kaplan




2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.



2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Anirban Mandal ◽  
Ajeet Kumar Jha ◽  
Dew Biswas ◽  
Shyamal Kanti Guha

Abstract Background The study was conducted to assess the characterization, differentiation, and in vitro cell regeneration potential of canine mesenteric white adipose tissue-derived mesenchymal stem cells (AD-MSCs). The tissue was harvested through surgical incision and digested with collagenase to obtain a stromal vascular fraction. Mesenchymal stem cells isolated from the stromal vascular fraction were characterized through flow cytometry and reverse transcription-polymerase chain reaction. Assessment of cell viability, in vitro cell regeneration, and cell senescence were carried out through MTT assay, wound healing assay, and β-galactosidase assay, respectively. To ascertain the trilineage differentiation potential, MSCs were stained with alizarin red for osteocytes, alcian blue for chondrocytes, and oil o red for adipocytes. In addition, differentiated cells were characterized through a reverse transcription-polymerase chain reaction. Results We observed the elongated, spindle-shaped, and fibroblast-like appearance of cells after 72 h of initial culture. Flow cytometry results showed positive expression for CD44, CD90, and negative expression for CD45 surface markers. Population doubling time was found 18–24 h for up to the fourth passage and 30±0.5 h for the fifth passage. A wound-healing assay was used to determine cell migration rate which was found 136.9 ± 4.7 μm/h. We observed long-term in vitro cell proliferation resulted in MSC senescence. Furthermore, we also found that the isolated cells were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages. Conclusions Mesenteric white adipose tissue was found to be a potential source for isolation, characterization, and differentiation of MSCs. This study might be helpful for resolving the problems regarding the paucity of information concerning the basic biology of stem cells. The large-scale use of AD-MSCs might be a remedial measure in regenerative medicine.



Sign in / Sign up

Export Citation Format

Share Document