The Journal of Basic and Applied Zoology
Latest Publications


TOTAL DOCUMENTS

254
(FIVE YEARS 191)

H-INDEX

5
(FIVE YEARS 3)

Published By Springer (Biomed Central Ltd.)

2090-990x

2022 ◽  
Vol 83 (1) ◽  
Author(s):  
Elsabry Abu Amra ◽  
Sohir Ali Abd El Rehim ◽  
Fakhr Mostafa Lashein ◽  
Heba Seleem Shoaeb

Abstract Background Animal venoms have been known as a source of drugs beneficial to human health. Accordingly, this study was designed to determine the effect of bradykinin potentiating factor (BPF) separated from honey bee venom, Apis mellifera on histological structure, thyroid and male sex hormones of the thyroid gland and testis in a model of hypothyroid male white rats induced by carbimazole. Results This study includes male rats divided into 6 main and sub-groups (10 rats in each group). Control group, carbimazole group, levothyroxine group, BPF group, carbimazole group treated with levothyroxine and carbimazole group treated with BPF. At the end of experiments (60 days) rats were sacrificed and dissected; the blood was collected for determination of thyroid and male sex hormones. Also, the thyroid gland and testis were taken to histological study. The results indicated that, carbimazole group showed a highly significant decrease in thyroid hormones (T4, T3, Ft4 and Ft3) and male sex hormones (LH, FSH and testosterone), but a significant increase in TSH compared to control group. The results revealed that, treated groups with levothyroxine or BPF have significant increase in thyroid and male sex hormones and significant decreasein TSH. A significant improvement was detected in co-treated groups (hypothyroid groups) with levothyroxine or (BPF). Also, the present study showed a histopathological change in thyroid gland and testis of hypothyroid male rats. Conclusion Treated hypothyroid rats with levothyroxine as a drug and BPF as a natural product showed an improvement of these complications induced by carbimazole in thyroid gland and testis. Therefore, BPF may be benefical in treatment of hypothyroidism.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Soha A. Mobarak

Abstract Background The ovotestis gland (the hermaphrodite gland) is a reproductive system organ that affects fertility of land snails. Thus, the present study was conducted to evaluate the effect of three inorganic salts (sodium carbonate, sodium benzoate, and sodium nitrate) against the land snail, Massylaea vermiculata under laboratory and field conditions. Snails were treated with serial concentrations of the tested salts for seven days using thin-layer film technique. The LC50 of each salt was determined, and the effect of ½ LC50 of each was tested on egg-laying. In addition, LPO enzyme was determined, and the histological effect of the ovotestis gland was inspected. The field efficiency of sodium carbonate and sodium nitrate were evaluated as a spray for 21 days on pomegranate nursery trees at Giza Governorate. The effects of inorganic salts were compared with methomyl (the compound recommended by the Egyptian Ministry of Agriculture against land snails in the field). Results The laboratory results revealed that sodium carbonate and sodium nitrate were more toxic than sodium benzoate, whereas the LC50 were 2.4, 9.6, and 11.8% for the three inorganic salts, respectively. Sodium carbonate and sodium nitrate achieved complete inhibition for egg production, while sodium benzoate gave 37.7% compared to 96.8% for hatchability control. Sodium carbonate and sodium benzoate exhibited significant effect on LPO enzyme, while a non-significant effect was recorded by sodium nitrite compared with control. Regarding the histological effect, sodium carbonate and sodium nitrate had the same effect on ovotestis, as a necrobiotic change was observed in the ova, and diminishing in spermatozoal concentration, while sodium benzoate caused decreasing in spermatozoal concentration without any alteration in the ovarian compared with control. Regarding the field results, sodium carbonate and sodium nitrate achieved 78.4 and 79.0% reduction in land snail populations, respectively, compared with 75% for methomyl compound. Conclusions The tested inorganic salts have highly toxic effect against the land snail, M. vermiculata, and they can be used in field control programs, after conducting more studies on their effect on the soil and other environmental components.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Modo Marc ◽  
Bakwo Fils Eric Moïse ◽  
Tatsimo Ndendoung Simplice Joël ◽  
Tamesse Joseph Lebel

Abstract Background Vector-borne diseases are mostly transmitted by mosquitoes. Therefore, these mosquitoes constitute a socio-economic scourge. Due to the resistance of mosquitoes to synthetic chemical insecticides and the pollution they generate, this study was conducted to assess the larvicidal activity of plant crude extracts on larvae of Culex quinquefasciatus. Results Bioassays performed on larvae shown that the extract of Calotropis procera at 0.6 mg/mL recorded the highest mortality rate of 100% for L1, L2 and L3. However, the extract of Albizia lebbeck at 0.7 mg/mL recorded the highest mortality rate of 100% for all the four stages of larvae. Negative and positive controls recorded 16% and 100% mortalities, respectively, after 24 h of exposure. The extract of Calotropis procera recorded LC50 values as follows: 0.194, 0.251, 0.258 and 0.284 mg/mL for L1, L2, L3 and L4, respectively. The LC90 of Calotropis procera were: 0.340, 0.433, 0.444 and 0.502 mg/mL for L1, L2, L3 and L4, respectively. In contrast, the extract of Albizia lebbeck recorded the following LC50: 0.238, 0.264, 0.290 and 0.316 mg/mL for L1, L2, L3 and L4, respectively. Also, its LC90 were: 0.456, 0.498, 0.531 and 0.580 mg/mL, respectively, to L1, L2, L3 and L4. Conclusion The larvicidal bioassays performed revealed that these plant extracts have significant larvicidal properties. In the framework of fighting against vector-borne diseases, these two plants constitute alternative products to control mosquitoes.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Isaac Omotayo Olabimi ◽  
Kayode David Ileke ◽  
Babasola Williams Adu ◽  
Temitope Emmanuel Arotolu

Abstract Background Mosquitoes are key vectors for the transmission of several diseases. Anopheles gambiae is known to transmit pathogens of malaria and filariasis. Due to several anthropogenic factors such as climate change and population growth leading to diverse land use, their distribution and disease spreading pattern may change. This study estimated the potential distribution and climatic suitability of An. gambiae under the present-day and future conditions across Southwest Nigeria using Ecological Niche Modelling (ENM). The future scenarios assessed were based on two general circulation models (GCMs), namely community climate system model 4 (CCSM4) and geophysical fluid dynamics laboratory-climate model 3 (GFDL-CM3), in two representative concentration pathways (RCP 2.6 and RCP 8.5). Methodology The occurrence data were obtained from literatures that have reported the presence of An. gambiae mosquito species in locations within the study area. Ecological niche modelling data were processed and analysed using maximum entropy algorithm implemented in MaxEnt. Result Fifty-five (55) unique occurrences of An. gambiae were used in the model calibration after data cleaning. Data analysis for the present-day habitat suitability shows that more than two-thirds (81.71%) of the study area was observed to be suitable for An. gambiae population. However, the two future GCMs showed contrasting results. The CCSM4 models indicated a slight increase in both RCPs with 2.5 and 8.5 having 81.77 and 82.34% suitability, respectively. The reverse was the case for the GFDL-CM3 models as RCPs 2.5 and 8.5 had 78.86 and 76.86%. Conclusion This study revealed that the study area is climatically suitable for An. gambiae and will continue to be so in the future irrespective of the contrasting results from the GCMs used. Since vector population is often linked with their disease transmission capacity, proper measures must be put in place to mitigate disease incidences associated with the activities of An. gambiae.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Emmanuel I. Nnamonu ◽  
Gregory E. Odo ◽  
Ifeanyi O. Ajuzie ◽  
Chritopher D. Nwani

Abstract Background Animals that live and feed on the soil and its constituents and products naturally absorb heavy metals and pass to other organisms linked in the food chains. The present study was designed to examine bioaccumulation of heavy metals levels and proximate composition quality in edible Achatina spp sampled in agro-rural settlements, south-east Nigeria. Results The proximate composition recorded the presence of moisture, protein, crude fibre, fat and oil, ash, carbohydrates, nitrogen and calcium, which were similar across selected Achatina spp except for calcium, which was significantly higher in A. achatina. The bioaccumulation factors of heavy metal contents in snails were generally low (below recommended tolerable limits according to WHO standard). Conclusion The good number of nutrients recorded in proximate composition makes the Achatina spp an alternative to domestically farmed animals. Achatina achatina contained most calcium level compared with Achatina fulica and Achatina marginate. The bioaccumulation factors of heavy metal contents in snails were generally low (below recommended tolerable limits according to WHO standard). Land snails in our study areas were safe for consumption.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Mona F. Fol ◽  
Nesma A. Mostafa

Abstract Background Thelandros (Pharyngodonidae) is a gastrointestinal nematode parasite with a life cycle including lizards as main hosts. Thelandros chalcidae collected from the large intestine of the Egyptian ocellated skink, Chalcides ocellatus were described and illustrated by light and scanning electron microscopes. Seven out of fifteen (46.66%) of the examined lizards were found to be naturally infected. Also, host intestinal tissues were evaluated from hematoxylin/eosin-stained sections to describe any histopathological changes. Results Microscopic examinations revealed that the recovered pharyngodonid species characterized by mouth with triangular opening and surrounded by six simple lips, the cuticle had regular transverse annulations extending from the posterior margin of the lips to the end of the body. Male was cylindrical with distinct truncated posterior end and measured 1.59–1.86 (1.64 ± 0.10) long and 0.29–0.37 (0.32 ± 0.01) in maximum width at the level of mid-body. Female measured 1.72–2.43 (1.85 ± 0.2) long and 0.36–0.49 (0.42 ± 0.01) maximum width at the mid-body level, terminated posteriorly in a short, stout spike. Histological studies observed structural alterations represented by leukocytic infiltration, villi atrophy, and muscularis degeneration. These changes were indicative of inflammatory and degenerative reaction due to Thelandros chalcidae infection. Conclusion The present morphological study revealed that the recovered pharyngodonid species was Thelandros chalcidae causing pathological alterations in Chalcides ocellatus intestinal tissues.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Nishi Pandya ◽  
Bhumi Thakkar ◽  
Parth Pandya ◽  
Pragna Parikh

Abstract Background Organophosphates and Pyrethroids are the most widely used pesticides worldwide and are known to have significant toxicity on the nervous system of the target pest. Assessment for combined toxicity of Organophosphate and Pyrethroid on Sf9 (Spodoptera frugiperda) cells is less explored. The present study demonstrates and compares the two organochemicals whose trade names are Ammo and Profex, for its cytotoxic potential on the insect Sf9 cells. Ammo and Profex were selected as the test chemicals as toxicity of these insecticides at molecular and cellular level is poorly understood. Results The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay demonstrated that Ammo and Profex exhibited significant cytotoxicity to Sf9 cells in a time- and dose-dependent manner. In our study, the IC50 value was obtained by MTT assay and the sub-lethal concentrations (IC50/20-17.5 µg/ml, IC50/10-35 µg/ml, and IC50/5–70 µg/ml for Ammo and IC50/20-20 µg/ml, IC50/10-40 µg/ml, and IC50/5-80 µg/ml for Profex) were selected for further tests. Acridine orange/ethidium bromide staining proved the apoptotic cell death on exposure of both the insecticides confirming its toxic potential. Furthermore, antioxidant status was assessed using DCF-DA staining and both the insecticides resulted into an increased reactive oxygen species (ROS) generation. A dose- and time-dependent significant (p < 0.05) alterations in lipid peroxidase (LPO), glutathione (GSH) and catalase (CAT) activity were observed. Conclusion The results showed that both Ammo and Profex triggered apoptosis in Sf9 cells through an intrinsic mitochondrial pathway via the generation of ROS. Of the two insecticides, Ammo was found to be more toxic compared to Profex. The present study is important to evaluate the environmental safety and risk factors of Organochemicals’ exposure to crops and livestock.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Gbadamosi K. Oluyemi

Abstract Background Thermal stressors in tropical aquaculture are unavoidable and cause many harmful effects. This study assessed the effects of ascorbic acid (AA) and iron nanoparticles supplementation in the diet of African catfish, Clarias gariepinus, and exposed to hyperthermia-induced stress. C. gariepinus juveniles weighing 6.89 ± 0.05 g were randomly distributed into plastic tanks of 48 cm by 30 cm by 31 cm dimension at ten fish per tank in a triplicate treatment. Five isonitrogenous and isocaloric diets containing 35% crude protein were formulated with AA and iron nanoparticles supplementation at (10, 8, 6, 4, 0) g/kg of AA and (0, 4, 6, 8, 0) g/kg of iron nanoparticles in treatment 1, 2, 3, 4 and 5, respectively. After 8 weeks of feeding, fish were exposed to hyperthermia-induced stress. Blood was collected from the fish for haematological and biochemical analyses. Results Results showed that there were significant differences (P < 0.05) in the growth performance and nutrient utilization of fish subjected to hyperthermia-induced stress. Treatment three had the highest specific growth rate of 1.89 g per day and the best feed conversion ratio (FCR) of 1.48. Conclusion Mortality was reduced with the supplementation of the fish diets with AA and iron nanoparticles. Based on the result of this study, a supplementation level containing AA and iron nanoparticles supplementation of 6 g/kg and 4 g/kg were sufficient as a stress-reducing agent in the production of C. gariepinus during hyperthermia stress.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
A. B. Sikiru ◽  
O. J. Makinde ◽  
E. Opoola ◽  
S. K. Omotugba ◽  
A. R. Musa

Abstract Background The heat shock protein-70 (HSP70) is a protein associated with response and adaptation to stress, as well as protection of the cells against thermal and oxidative stress in animals. It is an evolutionarily conserved protein, but its expression has been reportedly varied. Therefore, this study implemented computational analyses of the amino acid sequences of this gene for a better understanding of the evolutionary and protein interactions variations associated with the gene to facilitate its exploitation for the breeding of animals with increasing adaptation to heat stress. Results The result showed that there is a wide evolutionary distance between humans and the selected farm animals studied but elegans shared a common evolutionary relationship with the farm animals. The sequence identity analysis returned exact matches among the sequences as minimum = 8.09%, maximum = 98.58%, and mean ± SD = 71.03 ± 26.3% across all the species, while the sequence similarities resemblance among the sequences were minimum = 16.49%, maximum = 100%, and mean ± SD = 78.99 ± 24.39%. The global block substitution matrix (BLOSUM62) analysis returned minimum = 0.18, maximum = 0.98, and mean ± SD = 0.62 ± 0.34. The analysis of the molecular weight of the protein sequences returned minimum = 5.70 kDa, maximum = 6.41 kDa, mean = 6.28 kDa, and standard deviation 0.17 kDa, and the isoelectric point of the protein sequences was minimum = 4.55, maximum = 7.17, mean = 5.56, and standard deviation = 0.65 while the hydrophobicity of the protein sequences were minimum = 45.20 kcal/mol, maximum = 53.02 kcal/mol, mean = 47.81 kcal/mol, and standard deviation = 1.85 kcal/mol. Conclusion The outcomes of the computational analyses led to the conclusion that variations exist in the conservations of amino acid residues of the gene in the studied farm and non-farm animals, and this is responsible for the differences and similarities in the expression of the HSP70 gene in different animals. It was also concluded that elegans are suitable model that could be exploited for a better understanding of response and adaptation to heat stress in duck, chicken, cattle, sheep, and goat when focusing on regulation and expression of heat shock protein gene 70 (HSP70).


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Samuel Olusayo Akinkuolie ◽  
Henry Adefisayo Adewole ◽  
Promise Olabode Ololade ◽  
Bola Morufat Lawal ◽  
Victor Folorunso Olaleye

Abstract Background Various substances released from modern complex human societies which enter the aquatic ecosystems produce alterations in survivability of aquatic biota. This study assesses the consequence of exposure to industrial effluents containing potentially hazardous constituents, especially soap industrial waste effluent, relative to fish physiology, growth and survival, particularly food fish such as Clarias gariepinus. Five hundred (500) fingerlings of C. gariepinus (15.65 ± 0.02 g) randomly stocked at 50 fish per tank in duplicates were exposed to varying concentration (0, 0.32, 0.66, 1.31 and 2.63%) of homogenous effluent sample and fed Durante® floating feed at 5% of the body weight in two instalments per day for 180 days. The growth performance and feed utilization data were generated to determine the growth performance indices. The haematological parameters of the fish were also determined following routine methods of fish haematology. Result Generally, fish in the control had significantly (p < 0.05) better growth performance indices compared with the exposed fish. It was also observed that most of the significant increase or decrease observed in the growth performance was concentration dependent. Increase in HES concentration which significantly increases (p < 0.05) WBC count of the experimental fish was observed to decrease (p < 0.05) the HGB level of the fish. Significantly higher (p < 0.05) levels of RBC (3.02 ± 0.03 × 106/µL) and HCT (36.70 ± 1.68%) were recorded in the control fish. However, all the exposed fish had significantly higher (p < 0.05) levels of platelet count compared with the control. Conclusion This study concluded that exposure to concentrations of soap effluent induced stress, inhibited growth and altered the haematological indices of the exposed fish. Uncontrolled discharge of soap effluent into receiving water bodies, apart from affecting the wellbeing of an important freshwater food fish, there is every probability of possible accumulation of the chemical/toxic additives of the soap effluent which could have serious implications considering the man as the major and final recipient of these toxic bioaccumulated chemicals via the food chain and the environment.


Sign in / Sign up

Export Citation Format

Share Document