scholarly journals Derivation, characterization, and in vitro cell regeneration of canine white adipose tissue-derived mesenchymal stem cells obtained from a mesenteric region

2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Anirban Mandal ◽  
Ajeet Kumar Jha ◽  
Dew Biswas ◽  
Shyamal Kanti Guha

Abstract Background The study was conducted to assess the characterization, differentiation, and in vitro cell regeneration potential of canine mesenteric white adipose tissue-derived mesenchymal stem cells (AD-MSCs). The tissue was harvested through surgical incision and digested with collagenase to obtain a stromal vascular fraction. Mesenchymal stem cells isolated from the stromal vascular fraction were characterized through flow cytometry and reverse transcription-polymerase chain reaction. Assessment of cell viability, in vitro cell regeneration, and cell senescence were carried out through MTT assay, wound healing assay, and β-galactosidase assay, respectively. To ascertain the trilineage differentiation potential, MSCs were stained with alizarin red for osteocytes, alcian blue for chondrocytes, and oil o red for adipocytes. In addition, differentiated cells were characterized through a reverse transcription-polymerase chain reaction. Results We observed the elongated, spindle-shaped, and fibroblast-like appearance of cells after 72 h of initial culture. Flow cytometry results showed positive expression for CD44, CD90, and negative expression for CD45 surface markers. Population doubling time was found 18–24 h for up to the fourth passage and 30±0.5 h for the fifth passage. A wound-healing assay was used to determine cell migration rate which was found 136.9 ± 4.7 μm/h. We observed long-term in vitro cell proliferation resulted in MSC senescence. Furthermore, we also found that the isolated cells were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages. Conclusions Mesenteric white adipose tissue was found to be a potential source for isolation, characterization, and differentiation of MSCs. This study might be helpful for resolving the problems regarding the paucity of information concerning the basic biology of stem cells. The large-scale use of AD-MSCs might be a remedial measure in regenerative medicine.

2020 ◽  
Author(s):  
Ying Liu ◽  
Dan Lin ◽  
Haiyang Zhang ◽  
Huiya Wang ◽  
Ting Deng ◽  
...  

Abstract BACKGROUNDCancer-associated cachexia (CAC) is defined as a multifactorial syndrome including depletion of adipose tissue and skeletal muscle. Adipose tissue wasting, as a key characteristic of CAC, occurs early and is related with poor survival. However, the influence of exosomes on adipo-differentiation in CAC remained be mysterious.METHODSOil-red staining, western blotting, and real-time polymerase chain reaction (RT-PCR) were used to investigate the adipo-differentiation capacity of A-MSCs from GC patients and healthy donors. Adipo-differentiation capacity of A-MSCs treated with exosomes from GES-1 or GC cell lines was also detected. To further explore the effects of exosomal miR-155 on adipo-differentiation in vitro, we carried out luciferase reporter assay. Finally, to evaluate the function of exosomal miR-155 in vivo, BALB/c mice were subcutaneously transplanted with SGC7901 cells transfected with lentivirus containing a miR-155 overexpressing (miR-155 OE) sequence or miR-155 shRNA (miR-155 KO) or control lentivirus(NC) to observe the change of adipo-differentiation of A-MSCs.RESULTSWe showed that miR-155 was high expressed in adipose mesenchymal stem cells (A-MSCs) isolated from GC patients, which exhibited significantly suppressed adipo-differentiation. Mechanistically, targeting C/EPBβ and suppressing C/EPBα and PPARγ by GC exosomal miR-155 was demonstrated to be involved in impairing the differentiation of A-MSCs into adipocytes. The expression of C/EPBβ C/EPBα and PPARγ were rescued through downregulating miR-155 in GC exosomes. Moreover, overexpression of miR-155 improved cancer cachexia in tumor-implanted mice, charactered by weight loss, tumor progression and low expression of C/EPBβ, C/EPBα, and PPARγ in A-MSCs as well as FABP4 in tumor-related adipose tissue. Decreasing level of miR-155 in implanted tumor blocked the anti-adipogenic effects of GC. CONCLUSIONGC exosomsal miR-155 suppressed adipo-differentiation of A-MSCs via targeting C/EPBβ of A-MSCs plays a crucial role in CAC.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Peter Succar ◽  
Edmond J. Breen ◽  
Donald Kuah ◽  
Benjamin R. Herbert

Osteoarthritis (OA) can be a debilitating degenerative disease and is the most common form of arthritic disease. There is a general consensus that current nonsurgical therapies are insufficient for younger OA sufferers who are not candidates for knee arthroplasties. Adipose-derived mesenchymal stem cells (MSCs) therapy for the treatment of OA can slow disease progression and lead to neocartilage formation. The mechanism of action is secretion driven. Current clinical preparations from adipose tissue for the treatment of OA include autologous stromal vascular fraction (SVF), SVF plus mature adipocytes, and culture-purified MSCs. Herein we have combined these human adipose-derived preparations with Hyaluronan (Hylan G-F 20: Synvisc)in vitroand measured alterations in cytokine profile. SVF plus mature adipocytes showed the greatest decreased in the proinflammatory cytokines IL-1β, IFN-γ, and VEGF. MCP-1 and MIP-1αdecreased substantially in the SVF preparations but not the purified MSCs. The purified MSC preparation was the only one to show increase in MIF. Overall the SVF plus mature adipocytes preparation may be most suited of all the preparations for combination with HA for the treatment of OA, based on the alterations of heavily implicated cytokines in OA disease progression. This will require further validation usingin vivomodels.


2021 ◽  
Vol 22 (14) ◽  
pp. 7476
Author(s):  
Nina Krešić ◽  
Marina Prišlin ◽  
Dunja Vlahović ◽  
Petar Kostešić ◽  
Ivana Ljolje ◽  
...  

The influence of cultivation on the expression pattern of canine adipose-derived mesenchymal stem cells (cAD-MSCs) surface markers, contributing to, among others, the promotion of growth, proliferation, differentiation and immunomodulatory mechanisms of an excellent therapeutic, is still unknown. To fill the gap, we investigated CD90, CD44, CD73, CD29, CD271, CD105, CD45 and CD14 patterns of expression at the protein level with flow cytometry and mRNA level using a real-time polymerase chain reaction array. Gentle variations of expression occurred during cultivation, along with increased CD90, CD44 and CD29 expression, low and decreasing CD271 and CD73 expression and a decrease of initially high CD105. As expected, CD45 and CD14 were not expressed by cAD-MSCs. Interestingly, we discovered a significant decrease of CD73 expression, compared to early (P1–P3) to late (P4–P6) passages, although the CD73 gene expression was found to be stable. The percentage of positive cells was found to be higher for all positive markers up to P4. As CD73′s one important feature is a modulation from a pro-inflammatory environment to an anti-inflammatory milieu, the expression of CD73 in our conditions indicate the need to consider the time cells spend in vitro before being transplanted into patients, since it could impact their favourable therapeutical properties.


2020 ◽  
Author(s):  
Ying Liu ◽  
Dan Lin ◽  
Huiya Wang ◽  
Haiyang Zhang ◽  
Ting Deng ◽  
...  

Abstract BACKGROUND: Cancer-associated cachexia (CAC) is defined as a multifactorial syndrome including depletion of adipose tissue and skeletal muscle. Adipose tissue wasting, as a key characteristic of CAC, occurs early and is related with poor survival. However, the influence of exosomes on adipo-differentiation in CAC remained be mysterious.METHODS: Oil-red staining, western blotting, and real-time polymerase chain reaction (RT-PCR) were used to investigate the adipo-differentiation capacity of A-MSCs from GC patients and healthy donors. Adipo-differentiation capacity of A-MSCs treated with exosomes from GES-1 or GC cell lines was also detected. To further explore the effects of exosomal miR-155 on adipo-differentiation in vitro, we carried out luciferase reporter assay. Finally, to evaluate the function of exosomal miR-155 in vivo, BALB/c mice were subcutaneously transplanted with SGC7901 cells transfected with lentivirus containing a miR-155 overexpressing (miR-155 OE) sequence or miR-155 shRNA (miR-155 KO) or control lentivirus(NC) to observe the change of adipo-differentiation of A-MSCs.RESULTS: We showed that miR-155 was high expressed in adipose mesenchymal stem cells (A-MSCs) isolated from GC patients, which exhibited significantly suppressed adipo-differentiation. Mechanistically, targeting C/EPBβ and suppressing C/EPBα and PPARγ by GC exosomal miR-155 was demonstrated to be involved in impairing the differentiation of A-MSCs into adipocytes. The expression of C/EPBβ C/EPBα and PPARγ were rescued through downregulating miR-155 in GC exosomes. Moreover, overexpression of miR-155 improved cancer cachexia in tumor-implanted mice, charactered by weight loss, tumor progression and low expression of C/EPBβ, C/EPBα, and PPARγ in A-MSCs as well as FABP4 in tumor-related adipose tissue. Decreasing level of miR-155 in implanted tumor blocked the anti-adipogenic effects of GC. CONCLUSION: GC exosomsal miR-155 suppressed adipo-differentiation of A-MSCs via targeting C/EPBβ of A-MSCs plays a crucial role in CAC.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2578
Author(s):  
Caterina M. Suelzu ◽  
Virna Conti ◽  
Youssef Khalidy ◽  
Sara Montagna ◽  
Gabriele Strusi ◽  
...  

Mesenchymal stem cells (MSCs) have been recently introduced in veterinary medicine as a potential therapeutic tool for several pathologies. The large-scale in vitro expansion needed to ensure the preparation of a suitable number of MSCs for clinical application usually requires the use of xenogeneic supplements like the fetal bovine serum (FBS). The substitution of FBS with species-specific supplements would improve the safety of implanted cells, reducing the risk of undesired immune responses following cell therapy. We have evaluated the effectiveness of canine adipose tissue-derived stromal vascular fraction (SVF) and MSCs (ADMSCs) expansion in the presence of canine blood-derived supplements. Cells were cultured on traditional plastic surface and inside a 3D environment derived from the jellification of different blood-derived products, i.e., platelet-poor plasma (PPP), platelet-rich plasma (PRP), or platelet lysate (PL). PPP, PRP, and PL can contribute to canine ADMSCs in vitro expansion. Both allogeneic and autologous PPP and PL can replace FBS for ADMSCs culture on a plastic surface, exhibiting either a similar (PPP) or a more effective (PL) stimulus to cell replication. Furthermore, the 3D environment based on homospecific blood-derived products polymerization provides a strong stimulus to ADMSCs replication, producing a higher number of cells in comparison to the plastic surface environment. Allogeneic or autologous blood products behave similarly. The work suggests that canine ADMSCs can be expanded in the absence of xenogeneic supplements, thus increasing the safety of cellular preparations. Furthermore, the 3D fibrin-based matrices could represent a simple, readily available environments for effective in vitro expansion of ADMSCs using allogeneic or autologous blood-products.


2020 ◽  
Author(s):  
Ying Liu ◽  
Dan Lin ◽  
Huiya Wang ◽  
Haiyang Zhang ◽  
Ting Deng ◽  
...  

Abstract BACKGROUND: Cancer-associated cachexia (CAC) is defined as a multifactorial syndrome including depletion of adipose tissue and skeletal muscle. Adipose tissue wasting, as a key characteristic of CAC, occurs early and is related with poor survival. However, the influence of exosomes on adipo-differentiation in CAC remained be mysterious.METHODS: Oil-red staining, western blotting, and real-time polymerase chain reaction (RT-PCR) were used to investigate the adipo-differentiation capacity of A-MSCs from GC patients and healthy donors. Adipo-differentiation capacity of A-MSCs treated with exosomes from GES-1 or GC cell lines was also detected. To further explore the effects of exosomal miR-155 on adipo-differentiation in vitro, we carried out luciferase reporter assay. Finally, to evaluate the function of exosomal miR-155 in vivo, BALB/c mice were subcutaneously transplanted with SGC7901 cells transfected with lentivirus containing a miR-155 overexpressing (miR-155 OE) sequence or miR-155 shRNA (miR-155 KO) or control lentivirus(NC) to observe the change of adipo-differentiation of A-MSCs.RESULTS: We showed that miR-155 was high expressed in adipose mesenchymal stem cells (A-MSCs) isolated from GC patients, which exhibited significantly suppressed adipo-differentiation. Mechanistically, targeting C/EPBβ and suppressing C/EPBα and PPARγ by GC exosomal miR-155 was demonstrated to be involved in impairing the differentiation of A-MSCs into adipocytes. The expression of C/EPBβ C/EPBα and PPARγ were rescued through downregulating miR-155 in GC exosomes. Moreover, overexpression of miR-155 improved cancer cachexia in tumor-implanted mice, charactered by weight loss, tumor progression and low expression of C/EPBβ, C/EPBα, and PPARγ in A-MSCs as well as FABP4 in tumor-related adipose tissue. Decreasing level of miR-155 in implanted tumor blocked the anti-adipogenic effects of GC. CONCLUSION: GC exosomsal miR-155 suppressed adipo-differentiation of A-MSCs via targeting C/EPBβ of A-MSCs plays a crucial role in CAC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


Gut ◽  
2008 ◽  
Vol 58 (4) ◽  
pp. 570-581 ◽  
Author(s):  
H Aurich ◽  
M Sgodda ◽  
P Kaltwasser ◽  
M Vetter ◽  
A Weise ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ilaria Roato ◽  
Daniela Alotto ◽  
Dimas Carolina Belisario ◽  
Stefania Casarin ◽  
Mara Fumagalli ◽  
...  

Osteoarthritis is characterized by loss of articular cartilage also due to reduced chondrogenic activity of mesenchymal stem cells (MSCs) from patients. Adipose tissue is an attractive source of MSCs (ATD-MSCs), representing an effective tool for reparative medicine, particularly for treatment of osteoarthritis, due to their chondrogenic and osteogenic differentiation capability. The treatment of symptomatic knee arthritis with ATD-MSCs proved effective with a single infusion, but multiple infusions could be also more efficacious. Here we studied some crucial aspects of adipose tissue banking procedures, evaluating ATD-MSCs viability, and differentiation capability after cryopreservation, to guarantee the quality of the tissue for multiple infusions. We reported that the presence of local anesthetic during lipoaspiration negatively affects cell viability of cryopreserved adipose tissue and cell growth of ATD-MSCs in culture. We observed that DMSO guarantees a faster growth of ATD-MSCs in culture than trehalose. At last, ATD-MSCs derived from fresh and cryopreserved samples at −80°C and −196°C showed viability and differentiation ability comparable to fresh samples. These data indicate that cryopreservation of adipose tissue at −80°C and −196°C is equivalent and preserves the content of ATD-MSCs in Stromal Vascular Fraction (SVF), guaranteeing the differentiation ability of ATD-MSCs.


Sign in / Sign up

Export Citation Format

Share Document