scholarly journals A Closed-Form Solution for Estimating the Accuracy of Circular Feature’ Pose for Object 2D-3D Pose Estimation System

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Cui Li ◽  
Derong Chen ◽  
Jiulu Gong ◽  
Yangyu Wu

Many objects in the real world have circular feature. In general, circular feature’s pose is represented by 5-DoF (degree of freedom) vector ξ = X , Y , Z , α , β T . It is a difficult task to measure the accuracy of circular feature’s pose in each direction and the correlation between each direction. This paper proposes a closed-form solution for estimating the accuracy of pose transformation of circular feature. The covariance matrix of ξ is used to measure the accuracy of the pose. The relationship between the pose of the circular feature of 3D object and the 2D points is analyzed to yield an implicit function, and then Gauss–Newton theorem is employed to compute the partial derivatives of the function with respect to such point, and after that the covariance matrix is computed from both the 2D points and the extraction error. In addition, the method utilizes the covariance matrix of 5-DoF circular feature’s pose variables to optimize the pose estimator. Based on pose covariance, minimize the mean square error (Min-MSE) metric is introduced to guide good 2D imaging point selection, and the total amount of noise introduced into the pose estimator can be reduced. This work provides an accuracy method for object 2D-3D pose estimation using circular feature. At last, the effectiveness of the method for estimating the accuracy is validated based on both random data sets and synthetic images. Various synthetic image sequences are illustrated to show the performance and advantages of the proposed pose optimization method for estimating circular feature’s pose.

Author(s):  
G. K. Ananthasuresh ◽  
Steven N. Kramer

Abstract The closed form solution of the analysis of the RSCR (Revolute-Spherical-Cylindrical-Revolute) spatial mechanism is presented in this paper. This work is based on the geometric characteristics of the mechanism involving the following three cases: the cone, the cylinder and the one-sheet hyperboloid. These cases derive their names from the nature of the locus of the slider of the linkage as viewed from the output side. Each case is then treated separately to develop a closed form, geometry based analysis technique. These analysis modules are then used to optimally synthesize the mechanism for function, path and motion generation problems satisfying precision conditions within prescribed accuracy limits. The Selective Precision Synthesis technique is employed to formulate the nonlinear inequality constraints. These constraints along with an objective function and other constraints are solved using the Generalized Reduced Gradient method of optimization. In addition, the use of mobility charts is used to aid the designer in making a judicious choice for the initial design point before invoking the optimization method. The determination of the transmission angle for the RSCR mechanism is also described and numerical examples for function, path and motion generation are also included. This new closed form method of analysis based on geometric characteristics is computationally less intensive than other available techniques for spatial mechanism analysis and helps in the visualization of the physical mechanism; something that is not possible with most vector and matrix methods.


1994 ◽  
Vol 116 (1) ◽  
pp. 174-181 ◽  
Author(s):  
G. K. Ananthasuresh ◽  
S. N. Kramer

A closed form solution of the analysis of the RSCR (Revolute-Spherical-Cylindrical-Revolute) spatial mechanism is presented in this paper. This work is based on the geometric characteristics of the mechanism involving the following three cases: the cone, the cylinder, and the one-sheet hyperboloid. These cases derive their names from the nature of the locus of the slider of the linkage as viewed from the output side. Each case is then treated separately to develop a closed form, geometry based analysis technique. These analysis modules are then used to optimally synthesize the mechanism for function, path and motion generation problems satisfying precision conditions within prescribed accuracy limits. The Selective Precision Synthesis technique is employed to formulate the nonlinear inequality constraints. These constraints along with an objective function and other constraints are solved using the Generalized Reduced Gradient method of optimization. In addition, mobility charts are used to aid the designer in making a judicious choice for the initial design point before invoking the optimization method. Numerical examples are presented to validate the theory. This new closed form method of analysis that is based on geometric characteristics is computationally less intensive than other available techniques for spatial mechanism analysis and helps in the visualization of the physical mechanism; something that is not possible with most vector and matrix methods.


1970 ◽  
Vol 92 (3) ◽  
pp. 531-535 ◽  
Author(s):  
S. N. Kramer ◽  
G. N. Sandor

The method of complex numbers is applied towards the kinematic synthesis of a planar geared five-bar cycloidal-crank mechanism for approximate function generation with finitely separated precision points. It is shown that up to 10 precision points can be obtained, and a closed-form solution is presented which yields up to 6 different mechanisms with a 6-point approximation. In this method, the designer has control over the design of the cycloidal crank regarding gear ratio and configuration. The method has been programmed for automatic digital computation on the IBM-360 system, and the program is made available to interested readers. An optimization method utilizing iterative application of the closed-form solution is outlined.


2008 ◽  
Vol 08 (01) ◽  
pp. 169-188 ◽  
Author(s):  
JEAN-YVES DIDIER ◽  
FAKHR-EDDINE ABABSA ◽  
MALIK MALLEM

Camera pose estimation from video images is a fundamental problem in machine vision and Augmented Reality (AR) systems. Most developed solutions are either linear for both n points and n lines, or iterative depending on nonlinear optimization of some geometric constraints. In this paper, we first survey several existing methods and compare their performances in an AR context. Then, we present a new linear algorithm which is based on square fiducials localization technique to give a closed-form solution to the pose estimation problem, free of any initialization. We also propose an hybrid technique which combines an iterative method, in fact the orthogonal iteration (OI) algorithm, with our own closed form solution. An evaluation of the methods has shown that this hybrid pose estimation technique is accurate and robust. Numerical experiments from real data are given comparing the performances of our hybrid method with several iterative techniques, and demonstrating the efficiency of our approach.


Sign in / Sign up

Export Citation Format

Share Document