scholarly journals Music Feature Classification Based on Recurrent Neural Networks with Channel Attention Mechanism

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jie Gan

With the advancement of multimedia and digital technologies, music resources are rapidly increasing over the Internet, which changed listeners’ habits from hard drives to online music platforms. It has allowed the researchers to use classification technologies for efficient storage, organization, retrieval, and recommendation of music resources. The traditional music classification methods use many artificially designed acoustic features, which require knowledge in the music field. The features of different classification tasks are often not universal. This paper provides a solution to this problem by proposing a novel recurrent neural network method with a channel attention mechanism for music feature classification. The music classification method based on a convolutional neural network ignores the timing characteristics of the audio itself. Therefore, this paper combines convolution structure with the bidirectional recurrent neural network and uses the attention mechanism to assign different attention weights to the output of the recurrent neural network at different times; the weights are assigned for getting a better representation of the overall characteristics of the music. The classification accuracy of the model on the GTZAN data set has increased to 93.1%. The AUC on the multilabel labeling data set MagnaTagATune has reached 92.3%, surpassing other comparison methods. The labeling of different music labels has been analyzed. This method has good labeling ability for most of the labels of music genres. Also, it has good performance on some labels of musical instruments, singing, and emotion categories.


2019 ◽  
Vol 11 (12) ◽  
pp. 247
Author(s):  
Xin Zhou ◽  
Peixin Dong ◽  
Jianping Xing ◽  
Peijia Sun

Accurate prediction of bus arrival times is a challenging problem in the public transportation field. Previous studies have shown that to improve prediction accuracy, more heterogeneous measurements provide better results. So what other factors should be added into the prediction model? Traditional prediction methods mainly use the arrival time and the distance between stations, but do not make full use of dynamic factors such as passenger number, dwell time, bus driving efficiency, etc. We propose a novel approach that takes full advantage of dynamic factors. Our approach is based on a Recurrent Neural Network (RNN). The experimental results indicate that a variety of prediction algorithms (such as Support Vector Machine, Kalman filter, Multilayer Perceptron, and RNN) have significantly improved performance after using dynamic factors. Further, we introduce RNN with an attention mechanism to adaptively select the most relevant input factors. Experiments demonstrate that the prediction accuracy of RNN with an attention mechanism is better than RNN with no attention mechanism when there are heterogeneous input factors. The experimental results show the superior performances of our approach on the data set provided by Jinan Public Transportation Corporation.





2018 ◽  
Vol 135 ◽  
pp. 433-440 ◽  
Author(s):  
Andry Chowanda ◽  
Alan Darmasaputra Chowanda


2019 ◽  
Vol 15 (6) ◽  
pp. 155014771985649 ◽  
Author(s):  
Van Quan Nguyen ◽  
Tien Nguyen Anh ◽  
Hyung-Jeong Yang

We proposed an approach for temporal event detection using deep learning and multi-embedding on a set of text data from social media. First, a convolutional neural network augmented with multiple word-embedding architectures is used as a text classifier for the pre-processing of the input textual data. Second, an event detection model using a recurrent neural network is employed to learn time series data features by extracting temporal information. Recently, convolutional neural networks have been used in natural language processing problems and have obtained excellent results as performing on available embedding vector. In this article, word-embedding features at the embedding layer are combined and fed to convolutional neural network. The proposed method shows no size limitation, supplementation of more embeddings than standard multichannel based approaches, and obtained similar performance (accuracy score) on some benchmark data sets, especially in an imbalanced data set. For event detection, a long short-term memory network is used as a predictor that learns higher level temporal features so as to predict future values. An error distribution estimation model is built to calculate the anomaly score of observation. Events are detected using a window-based method on the anomaly scores.



2021 ◽  
Author(s):  
Bo Cheng ◽  
Wei Xiang ◽  
Ruhui Xue ◽  
Hang Yang ◽  
Laili Zhu

Abstract The new type of coronavirus is called COVID-19. The virus can cause respiratory diseases, accompanied by cough, fever, difficulty breathing, and in severe cases, it can also cause symptoms such as pneumonia. It began to spread at the end of 2019 and has now spread to all parts of the world. The limited test kits and increasing number of cases encourage us to propose a deep learning model that can help radiologists and clinicians use chest X-rays to detect COVID-19 cases and show the diagnostic features of pneumonia. In this study, our methods are: 1) Propose a data enhancement method to increase the diversity of the data set, thereby improving the generalization performance of the network. 2) Using the deep convolutional neural network model DPN-SE, an attention mechanism is added on the basis of the DPN network, which greatly improves the performance of the network. 3) Use the lime interpretable library to mark the X-ray, the characteristic area on the medical image that is helpful for the doctor to make a diagnosis. The model we proposed can obtain better results with the least amount of data preprocessing given limited data. In general, the proposed method and model can effectively become a very useful tool for clinical practitioners and radiologists.



2020 ◽  
Vol 203 ◽  
pp. 105856 ◽  
Author(s):  
Yi Cai ◽  
Qingbao Huang ◽  
Zejun Lin ◽  
Jingyun Xu ◽  
Zhenhong Chen ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document