scholarly journals Consensus Conditions for a Class of Fractional-Order Nonlinear Multiagent Systems with Constant and Time-Varying Time Delays

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaorong Zhang ◽  
Min Shi

The consensus problem for a class of fractional-order nonlinear multiagent systems with a distributed protocol containing input time delay is investigated in this paper. Consider both cases of constant time delay and time-varying delay, the delay-independent consensus conditions are obtained to achieve the consensus of the systems, respectively, by adopting the linear matrix inequality (LMI) methods and stability theory of fractional-order systems. As illustrated by the numerical examples, the proposed theoretical results work well and accurately.

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Panpan Yang ◽  
Ye Tang ◽  
Maode Yan ◽  
Lei Zuo

The leader-follower consensus problem of second-order multiagent systems with both absent velocity measurement and time delay is considered. First of all, the consensus protocol is designed by introducing an auxiliary system to compensate for the unavailability of the velocity information. Then, time delay is incorporated into the consensus protocol and two cases with, respectively, constant time delay and time-varying delay are investigated. For the case of constant time delay, Lyapunov-Razumikhin theorem is deployed to obtain the sufficient conditions that guarantee the stability of the consensus algorithm. For the case of time-varying delay, the sufficient conditions are also derived by resorting to the Lyapunov-Razumkhin theorem and linear matrix inequalities (LMIs). Various numerical simulations demonstrate the correctness of the theoretical results.


Author(s):  
Pin-Lin Liu

This paper deals with the stabilization criteria for a class of time-varying delay systems with saturating actuator. Based on the Lyapunov–Krasovskii functional combining with linear matrix inequality techniques and Leibniz–Newton formula, delay-dependent stabilization criteria are derived using a state feedback controller. We also consider efficient convex optimization algorithms to the time-varying delay system with saturating actuator case: the maximal bound on the time delay such that the prescribed level of operation range and imposed exponential stability requirements are still preserved. The value of the time-delay as well as its rate of change are taken into account in the design method presented and further permit us to reduce the conservativeness of the approach. The results have been illustrated by given numerical examples. These results are shown to be less conservative than those reported in the literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jinfang Zhang ◽  
Yuanhua Qiao ◽  
Jun Miao ◽  
Lijuan Duan ◽  
Yanjun Zeng

Global synchronization analysis for complex networks with coupling delay is investigated. Firstly the constant time delay is analyzed and then the case for time-varying delay is considered. Sufficient conditions for network synchronization are given based on Lyapunov functional, linear matrix inequality, and Kronecker product technique. The unknown variables in the sufficient conditions are fewer than those in the recent reference. Moreover, for the time-varying delay case, we find that the conditions are dependent on the bounds of both time delay and its derivative, and the derivative of the time-varying delay can be any value in the bounds. Finally, numerical examples are given to validate the effectiveness of the obtained results.


Author(s):  
Abbas Zabihi Zonouz ◽  
Mohammad Ali Badamchizadeh ◽  
Amir Rikhtehgar Ghiasi

In this paper, a new method for designing controller for linear switching systems with varying delay is presented concerning the Hurwitz-Convex combination. For stability analysis the Lyapunov-Krasovskii function is used. The stability analysis results are given based on the linear matrix inequalities (LMIs), and it is possible to obtain upper delay bound that guarantees the stability of system by solving the linear matrix inequalities. Compared with the other methods, the proposed controller can be used to get a less conservative criterion and ensures the stability of linear switching systems with time-varying delay in which delay has way larger upper bound in comparison with the delay bounds that are considered in other methods. Numerical examples are given to demonstrate the effectiveness of proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Lei Ding ◽  
Hong-Bing Zeng ◽  
Wei Wang ◽  
Fei Yu

This paper investigates the stability of static recurrent neural networks (SRNNs) with a time-varying delay. Based on the complete delay-decomposing approach and quadratic separation framework, a novel Lyapunov-Krasovskii functional is constructed. By employing a reciprocally convex technique to consider the relationship between the time-varying delay and its varying interval, some improved delay-dependent stability conditions are presented in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the merits and the effectiveness of the proposed methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Tiejun Li ◽  
Junkang Tian

This paper is concerned with delay-dependent stability for continuous systems with two additive time-varying delay components. By constructing a new class of Lyapunov functional and using a new convex polyhedron method, a new delay-dependent stability criterion is derived in terms of linear matrix inequalities. The obtained stability criterion is less conservative than some existing ones. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document