scholarly journals Exploring Factors Contributing to Crash Injury Severity in the Rural-Urban Fringe of the Central City

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Biao Wu ◽  
Xingyu Wang ◽  
Tuo Liu ◽  
Naibao Dong ◽  
Yun Li

To analyze the risk factors influencing the crash injury severity in rural-urban fringes, crash data in rural-urban fringes were collected from Harbin, China. Four risk factors, namely, time of day, vehicle type, road feature, and crash type, were investigated associated with the severity of rural-urban fringe crashes. The crash injury severity was divided into two categories, including fatal and nonfatal crash. The logistic regression was applied to explore the relationships between the severity outcomes and time of day, vehicle type, road feature, and crash type. The test methods of goodness-of-fit and badness-of-fit are conducted to examine the validity of estimation results. The results show considerable matching of the number of different crash types between calculated results and actual data. Compared with the other influencing factors, the time of day is significant factor for crash injury severity based on the study. As such, the proposed calibration procedure and the factors of choice are recommended as a validated approach to analyze and identify the main factors influencing crash injury severity in rural-urban fringes.

2021 ◽  
Vol 2021 ◽  
pp. 1-11 ◽  
Author(s):  
Shubo Wu ◽  
Quan Yuan ◽  
Zhongwei Yan ◽  
Qing Xu

Vehicle to vulnerable road user (VRU) crashes occupy a large proportion of traffic crashes in China, and crash injury severity analysis can support traffic managers to understand the implicit rules behind the crashes. Therefore, 554 VRUs-involved crashes are collected from January, 2017, to February, 2021, in a city in northern China, including 322 vehicle-pedestrian crashes and 232 vehicle-bicycle crashes. First, a descriptive statistical analysis is conducted to investigate the characteristics of VRUs-involved crashes. Second, the extreme gradient boosting (XGBoost) model is introduced to identify the importance of risk factors (i.e., time of day, day of week, rushing hour, crash position, weather, and crash involvements) of VRUs-involved crashes. The statistical analysis demonstrates that the risk factors are closely related to VRUs-involved crash injury severity. Moreover, the results of XGBoost reveal that time of day has the greatest impact on VRUs-involved crashes, and crash position shows the minimum importance among these risk factors.


HYPERTENSION ◽  
2018 ◽  
Vol 0 (2.58) ◽  
pp. 59-69
Author(s):  
Yu.M. Sirenko ◽  
G.D. Radchenko ◽  
O.L. Rekovets

Author(s):  
Baxter Shandobil ◽  
Ty Lazarchik ◽  
Kelly Clifton

There is increasing evidence that ridehailing and other private-for-hire (PfH) services such as taxis and limousines are diverting trips from transit services. One question that arises is where and when PfH services are filling gaps in transit services and where they are competing with transit services that are publicly subsidized. Using weekday trip-level information for trips originating in or destined for the city center of Portland, OR from PfH transportation services (taxis, transportation network companies, limousines) and transit trip data collected from OpenTripPlanner, this study investigated the temporal and spatial differences in travel durations between actual PfH trips and comparable transit trips (the same origin–destination and time of day). This paper contributes to this question and to a growing body of research about the use of ridehailing and other on-demand services. Specifically, it provides a spatial and temporal analysis of the demand for PfH transportation using an actual census of trips for a given 2 week period. The comparison of trip durations of actual PfH trips to hypothetical transit trips for the same origin–destination pairs into or out of the central city gives insights for policy making around pricing and other regulatory frameworks that could be implemented in time and space.


Author(s):  
Raul E. Avelar ◽  
Karen Dixon ◽  
Boniphace Kutela ◽  
Sam Klump ◽  
Beth Wemple ◽  
...  

The calibration of safety performance functions (SPFs) is a mechanism included in the Highway Safety Manual (HSM) to adjust SPFs in the HSM for use in intended jurisdictions. Critically, the quality of the calibration procedure must be assessed before using the calibrated SPFs. Multiple resources to aid practitioners in calibrating SPFs have been developed in the years following the publication of the HSM 1st edition. Similarly, the literature suggests multiple ways to assess the goodness-of-fit (GOF) of a calibrated SPF to a data set from a given jurisdiction. This paper uses the calibration results of multiple intersection SPFs to a large Mississippi safety database to examine the relations between multiple GOF metrics. The goal is to develop a sensible single index that leverages the joint information from multiple GOF metrics to assess overall quality of calibration. A factor analysis applied to the calibration results revealed three underlying factors explaining 76% of the variability in the data. From these results, the authors developed an index and performed a sensitivity analysis. The key metrics were found to be, in descending order: the deviation of the cumulative residual (CURE) plot from the 95% confidence area, the mean absolute deviation, the modified R-squared, and the value of the calibration factor. This paper also presents comparisons between the index and alternative scoring strategies, as well as an effort to verify the results using synthetic data. The developed index is recommended to comprehensively assess the quality of the calibrated intersection SPFs.


Sign in / Sign up

Export Citation Format

Share Document