scholarly journals The New Simulation of Quasiperiodic Wave, Periodic Wave, and Soliton Solutions of the KdV-mKdV Equation via a Deep Learning Method

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yong Zhang ◽  
Huanhe Dong ◽  
Jiuyun Sun ◽  
Zhen Wang ◽  
Yong Fang ◽  
...  

How to solve the numerical solution of nonlinear partial differential equations efficiently and conveniently has always been a difficult and meaningful problem. In this paper, the data-driven quasiperiodic wave, periodic wave, and soliton solutions of the KdV-mKdV equation are simulated by the multilayer physics-informed neural networks (PINNs) and compared with the exact solution obtained by the generalized Jacobi elliptic function method. Firstly, the different types of solitary wave solutions are used as initial data to train the PINNs. At the same time, the different PINNs are applied to learn the same initial data by selecting the different numbers of initial points sampled, residual collocation points sampled, network layers, and neurons per hidden layer, respectively. The result shows that the PINNs well reconstruct the dynamical behaviors of the quasiperiodic wave, periodic wave, and soliton solutions for the KdV-mKdV equation, which gives a good way to simulate the solutions of nonlinear partial differential equations via one deep learning method.

2020 ◽  
Vol 07 (02) ◽  
pp. 2050012
Author(s):  
Riu Naito ◽  
Toshihiro Yamada

This paper gives an acceleration scheme for deep backward stochastic differential equation (BSDE) solver, a deep learning method for solving BSDEs introduced in Weinan et al. [Weinan, E, J Han and A Jentzen (2017). Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, Communications in Mathematics and Statistics, 5(4), 349–380]. The solutions of nonlinear partial differential equations are quickly estimated using technique of weak approximation even if the dimension is high. In particular, the loss function and the relative error for the target solution become sufficiently small through a smaller number of iteration steps in the new deep BSDE solver.


2009 ◽  
Vol 2009 ◽  
pp. 1-16
Author(s):  
Paul Bracken

The intrinsic geometry of surfaces and Riemannian spaces will be investigated. It is shown that many nonlinear partial differential equations with physical applications and soliton solutions can be determined from the components of the relevant metric for the space. The manifolds of interest are surfaces and higher-dimensional Riemannian spaces. Methods for specifying integrable evolutions of surfaces by means of these equations will also be presented.


Author(s):  
Kamal Ait Touchent ◽  
Zakia Hammouch ◽  
Toufik Mekkaoui ◽  
Canan Unlu

In this paper, we derive some new soliton solutions to $(2+1)$-Boiti-Leon Pempinelli equations with conformable derivative by using an expansion technique based on the Sinh-Gordon equation. The obtained solutions have different expression such as trigonometric, complex and hyperbolic functions. This powerful and simple technique can be used to investigate solutions of other  nonlinear partial differential equations.


Author(s):  
Hasan Bulut ◽  
Khalid ◽  
Ban Jamal

In this research paper, we investigate some novel soliton solutions to the perturbed Fokas-Lenells equation by using the (m + 1/G') expansion method. Some new solutions are obtained and they are plotted in two and three dimensions. This technique appears as a suitable, applicable, and efficient method to search for the exact solutions of nonlinear partial differential equations in a wide range. All gained optical soliton solutions are substituted into the FokasLenells equation and they verify it. The constraint conditions are also given.


Sign in / Sign up

Export Citation Format

Share Document