scholarly journals Effect of P Application Rate and Rhizobium Inoculation on Nodulation, Growth, and Yield Performance of Chickpea (Cicer arietinum L.)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Mebrahtu Gebremariam ◽  
Teklay Tesfay

Chickpea (Cicer arietinum L.) is the world’s third most vital food legume after beans and peas in production level. Yet, its productivity in the last decade has been declined, and it has been contended that the usual native soil rhizobial populations are insufficient/ineffective in N2-fixation. Rhizobium inoculation of the seed may substitute costly N-fertilizers and provide a useful way of achieving sustainable production. Hence, to supply an adequate rhizobial population in the rhizosphere, seed inoculation of chickpea with an effective and importunate rhizobial strain is essential in soils having no/feeble bacterial existence and has revealed optimistic effect on nodule number and mass, growth, yield, and its attributes over uninoculated ones. Its effect has been influenced by N content and P-deficiency of soil, rhizobium strain, variety, T°, pH, salinity, and moisture stress. Phosphorus (P) demand is high in chickpeas, and P deficiency also has a negative effect on chickpea production success. Several research results revealed significant effects of P rate (30–200 kg P2O5 ha−1) on nodule number, mass, and rating plant−1; LAI, RGR, DM, plant height, and branches plant−1; pods and grains plant−1, grain and biomass yields, 100-grain weight, and HI compared to the control. P rates response has been affected by moisture level, pH, available P and N, and variety. Particularly, joint use of P rate and rhizobium inoculation on chickpea has been stated to improve nodulation, growth, and yield and soil fertility. Various studies on the integrated use of P rate and rhizobium inoculation under varying situations showed enhanced nodulation, growth, and yield over the P rate or rhizobium inoculation alone. This might be attributed to adequate P supply and improved utilization with the provision of suitable N2-fixing bacteria for enhanced nodulation and adequate N supply.

2017 ◽  
Vol 9 (9) ◽  
pp. 182
Author(s):  
Abdullah M. Algosaibi ◽  
Ayman E. Badran ◽  
Abdulrahman M. Almadini ◽  
Mohammed M. El-Garawany

This experiment was conducted to study the effect of irrigation intervals on growth, yield and its components and some of the chemical characteristics of the soil after the harvest of quinoa (Chenopodium quinoa willd) plant. Three treatments were used as follow: T1 (twice irrigation every week, which is the common in the region), T2 (once irrigation every week) and T3 (twice irrigation every two weeks) using in a randomized complete block design with four replicates. The crop coefficient (Kc) value differed according to the stage of growth where the results showed that the T2 treatment gave the highest mean in all the studied traits followed by the T3 treatment in all traits except the number of seed/m2. The results also confirmed that the increase in water reduced the agronomic traits such as harvest index, number of seeds and yield of seeds and straw/m2. Also it showed that the pH values in soils were not significantly affected by irrigation, while Ec significantly affected. Correlation coefficient was negative with the most traits and low with the number of grain (0.34) under overall studied treatments which confirms that quinoa is a plant that needs limited amounts of irrigation water. On the other hand there was positive strong correlation between the harvest index and grain yield (0.92). The results showed that moisture stress treatments increased the concentration of the ionic, NH4-N and NO3-N significantly compared to soils which do not have moisture stress (T1, T2). We assume that the development based on Kc during growth-stages helps in irrigation management and provides precise water applications for quinoa plant. These results indicate that the water requirements of quinoa plant are limited and that quinoa plant growth is not affected by the lack of irrigation water on the crop and its qualities.


2010 ◽  
Vol 46 (5) ◽  
pp. 342-347 ◽  
Author(s):  
Sher M. Shahzad ◽  
Azeem Khalid ◽  
Muhammad Arshad ◽  
Jibran Tahir ◽  
Tariq Mahmood

2021 ◽  
Vol 9 (1) ◽  
pp. 2384-2387
Author(s):  
Parameshwarudu B ◽  
Arun Kumar Chaurasia ◽  
Wasim Khan ◽  
M Sekhar ◽  
Dhanush Reddy

Sign in / Sign up

Export Citation Format

Share Document