scholarly journals A Numerical Approach to Study Ablation of Large Bolides: Application to Chelyabinsk

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Josep M. Trigo-Rodríguez ◽  
Joan Dergham ◽  
Maria Gritsevich ◽  
Esko Lyytinen ◽  
Elizabeth A. Silber ◽  
...  

In this study, we investigate the ablation properties of bolides capable of producing meteorites. The casual dashcam recordings from many locations of the Chelyabinsk superbolide associated with the atmospheric entry of an 18 m in diameter near-Earth object (NEO) have provided an excellent opportunity to reconstruct its atmospheric trajectory, deceleration, and heliocentric orbit. In this study, we focus on the study of the ablation properties of the Chelyabinsk bolide on the basis of its deceleration and fragmentation. We explore whether meteoroids exhibiting abrupt fragmentation can be studied by analyzing segments of the trajectory that do not include a disruption episode. We apply that approach to the lower part of the trajectory of the Chelyabinsk bolide to demonstrate that the obtained parameters are consistent. To do that, we implemented a numerical (Runge–Kutta) method appropriate for deriving the ablation properties of bolides based on observations. The method was successfully tested with the cases previously published in the literature. Our model yields fits that agree with observations reasonably well. It also produces a good fit to the main observed characteristics of Chelyabinsk superbolide and provides its averaged ablation coefficient σ = 0.034 s2 km−2. Our study also explores the main implications for impact hazard, concluding that tens of meters in diameter NEOs encountering the Earth in grazing trajectories and exhibiting low geocentric velocities are penetrating deeper into the atmosphere than previously thought and, as such, are capable of producing meteorites and even damage on the ground.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Muhammad Ahsar Karim ◽  
Agus Yodi Gunawan

In this work, the forced Duffing equation with secondary resonance will be considered our subject by assuming that the initial values has uncertainty in terms of a fuzzy number. The resulted fuzzy models will be studied by three fuzzy differential approaches, namely, Hukuhara differential and its generalization and fuzzy differential inclusion. Applications of fuzzy arithmetics to the models lead to a set of alpha-cut deterministic systems with some additional equations. These systems are then solved by the extended Runge-Kutta method. The extended Runge-Kutta method is chosen as our numerical approach in order to enhance the order of accuracy of the solutions by including both function and its first derivative values in calculations. Among our fuzzy approaches, our simulations show that the fuzzy differential inclusion is the most appropriate approach to capture oscillation behaviors of the model. Using the aforementioned fuzzy approach, we then demonstrate how to estimate parameters to our generated fuzzy simulation data.



2015 ◽  
Vol 4 (1) ◽  
pp. 180
Author(s):  
M. Dehghanpour ◽  
A. Rahati ◽  
E. Dehghanian

<p>The world's common rules (Quantum Physics, Electronics, Computational Chemistry and Astronomy) find their normal mathematical explanation in language of differential equations, so finding optimum numerical solution methods for these equations are very important. In this paper, using an artificial neural network (ANN) a numerical approach is designed to solve a specific system of differential equations such that the training process of the ANN  calculates the  optimal values for the coefficients of third order Runge Kutta method. To validate our approach, we performed some experiments by solving two body problem using coefficients obtained by ANN and also two other well-known coefficients namely Classical and Heun. The results show that the ANN approach has a better performance in compare with two other approaches.</p>



Author(s):  
Haitao Liu ◽  
Wang Yulan ◽  
Li Cao ◽  
Wei Zhang

Nonlinear vibration arises everywhere in a bistable system. The bistable system has been widely applied in physics, biology, and chemistry. In this article, in order to numerically simulate a class of space fractional-order bistable system, we introduce a numerical approach based on the modified Fourier spectral method and fourth-order Runge-Kutta method. The fourth-order Runge-Kutta method is used in time, and the Fourier spectrum is used in space to approximate the solution of the space fractional-order bistable system. Numerical experiments are given to illustrate the effectiveness of this method.





Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Yi Zhou ◽  
Lin Yang ◽  
Changyue Fan ◽  
...  

Abstract Aiming at the current development of drilling technology and the deepening of oil and gas exploration, we focus on better studying the nonlinear dynamic characteristics of the drill string under complex working conditions and knowing the real movement of the drill string during drilling. This paper firstly combines the actual situation of the well to establish the dynamic model of the horizontal drill string, and analyzes the dynamic characteristics, giving the expression of the force of each part of the model. Secondly, it introduces the piecewise constant method (simply known as PT method), and gives the solution equation. Then according to the basic parameters, the axial vibration displacement and vibration velocity at the test points are solved by the PT method and the Runge–Kutta method, respectively, and the phase diagram, the Poincare map, and the spectrogram are obtained. The results obtained by the two methods are compared and analyzed. Finally, the relevant experimental tests are carried out. It shows that the results of the dynamic model of the horizontal drill string are basically consistent with the results obtained by the actual test, which verifies the validity of the dynamic model and the correctness of the calculated results. When solving the drill string nonlinear dynamics, the results of the PT method is closer to the theoretical solution than that of the Runge–Kutta method with the same order and time step. And the PT method is better than the Runge–Kutta method with the same order in smoothness and continuity in solving the drill string nonlinear dynamics.







Sign in / Sign up

Export Citation Format

Share Document