cloth simulation
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 30)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 41 (2) ◽  
pp. 427-443
Author(s):  
Hongly Va ◽  
Min-Hyung Choi ◽  
Min Hong

2021 ◽  
Author(s):  
Haowei Han ◽  
Meng Sun ◽  
Siyu Zhang ◽  
Dongying Liu ◽  
Tiantian Liu
Keyword(s):  

2021 ◽  
Vol 11 (17) ◽  
pp. 8255
Author(s):  
Hongly Va ◽  
Min-Hyung Choi ◽  
Min Hong

While the cloth component in Unity engine has been used to represent the 3D cloth object for augmented reality (AR) and virtual reality (VR), it has several limitations in term of resolution and performance. The purpose of our research is to develop a stable cloth simulation based on a parallel algorithm. The method of a mass–spring system is applied to real-time cloth simulation with three types of springs. However, cloth simulation using the mass–spring system requires a small integration time-step to use a large stiffness coefficient. Furthermore, constraint enforcement is applied to obtain the stable behavior of the cloth model. To reduce the computational burden of constraint enforcement, the adaptive constraint activation and deactivation (ACAD) technique that includes the mass–spring system and constraint enforcement method is applied to prevent excessive elongation of the cloth. The proposed algorithm utilizes the graphics processing unit (GPU) parallel processing, and implements it in Compute Shader that executes in different pipelines to the rendering pipeline. In this paper, we investigate the performance and compare the behavior of the mass–spring system, constraint enforcement, and ACAD techniques using a GPU-based parallel method.


2021 ◽  
Vol 13 (15) ◽  
pp. 2938
Author(s):  
Feng Li ◽  
Haihong Zhu ◽  
Zhenwei Luo ◽  
Hang Shen ◽  
Lin Li

Separating point clouds into ground and nonground points is an essential step in the processing of airborne laser scanning (ALS) data for various applications. Interpolation-based filtering algorithms have been commonly used for filtering ALS point cloud data. However, most conventional interpolation-based algorithms have exhibited a drawback in terms of retaining abrupt terrain characteristics, resulting in poor algorithmic precision in these regions. To overcome this drawback, this paper proposes an improved adaptive surface interpolation filter with a multilevel hierarchy by using a cloth simulation and relief amplitude. This method uses three hierarchy levels of provisional digital elevation model (DEM) raster surfaces with thin plate spline (TPS) interpolation to separate ground points from unclassified points based on adaptive residual thresholds. A cloth simulation algorithm is adopted to generate sufficient effective initial ground seeds for constructing topographic surfaces with high quality. Residual thresholds are adaptively constructed by the relief amplitude of the examined area to capture complex landscape characteristics during the classification process. Fifteen samples from the International Society for Photogrammetry and Remote Sensing (ISPRS) commission are used to assess the performance of the proposed algorithm. The experimental results indicate that the proposed method can produce satisfying results in both flat areas and steep areas. In a comparison with other approaches, this method demonstrates its superior performance in terms of filtering results with the lowest omission error rate; in particular, the proposed approach retains discontinuous terrain features with steep slopes and terraces.


2021 ◽  
Vol 7 (2) ◽  
pp. 107
Author(s):  
Ardian Yuligar Safagi ◽  
Kusrini Kusrini ◽  
Hanif Al Fatta

Pengaruh penerapan pipeline dalam sebuah industry animasi 3d sangat mempengaruhi produksi animasi agar maksimal. Dalam masing-masing divisi juga terdapat pipeline yang digunakan contohnya pipeline pada divisi cloth simulation. Pada MSV Studio pipeline simulasi yang diterapkan di divisi cloth simulation masih terdapat beberapa kendala pada saat produksi. Cara kerja pipeline yang sudah ada yaitu pada saat proses pengecekan data asset yang masih manual antara Sceneres dan Renderes yang diperlukan untuk simulasi cloth masih sering terjadi kesalahan seperti human error dan set up cloth masih dilakukan disetiap shot. Dari masalah tersebut diusulkan untuk dilakukan pengembangan pipeline cloth simulation agar bisa meminimalisir kesalahan dan menghemat waktu pengerjaan. Hasil dari produksi film animasi sangat dipengaruhi oleh pipeline yang digunakan dalam produksi tersebut. Studi ini memberikan gambaran bagaimana sebuah pipeline ikut andil besar dalam sebuah hasil dari produksi film animasi 3D terutama dalam masalah waktu. Pada akhirnya studi ini dapat menjadi acuan dalam pembuatan sebuah pipeline film animasi khususnya pada divisi cloth simulation.Kata Kunci — pipeline, cloth simulation, animasi 3DThe effect of pipeline application in a 3D animation industry greatly influences the production of animation for maximizing. In each division. there is also a pipeline that is used for example the pipeline in the cloth simulation division. In the MSV studio pipeline simulation applied in the cloth simulation division there were still some obstacles during production. The work of the existing pipeline during the process of checking asset data which is still manual between Sceneres and Renderes needed for cloth simulation is still often had an error such as human error and set up cloth still done in every shot. From this problem it is proposed to develop a pipeline cloth simulation in order to minimize errors and saving time processing. The results of the production of animated films are strongly influenced by the pipeline used in the production. This studyprovides an illustration of how a pipeline contributes greatly to the results of the production of 3D animated films, especially in the matter of time. In the end, this study can be a reference in making an animation film pipeline, especially in the cloth simulation division.Keywords — pipeline, cloth simulation, 3D animation


Sign in / Sign up

Export Citation Format

Share Document