scholarly journals Utilization of Rooftop Solar Units to Generate Electricity and Hydrogen: A Technoeconomic Analysis

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mostafa Rezaei ◽  
Mehdi Jahangiri ◽  
Armin Razmjoo

This study is aimed at scrutinizing the domestic solar energy potential for electricity and hydrogen production. Under the first scenario, it is sought to evaluate electricity generation for household purposes using RSUs (rooftop solar units). Then, under the second scenario, solar hydrogen production is analyzed for the purpose of meeting a hydrogen vehicle demand. For this, one of the aptest cities, Yazd, located in the center of Iran is investigated. Furthermore, a real-world electric load needed by an usual household in Yazd is deemed as the demand for electricity. To analyze the two scenarios, a system consisting of an 8.2 kW RSU for power generation, a battery for electricity storage, and a 1 kW electrolyzer for hydrogen yield is proposed. Also, to acquire a broader vision, predictions are made for the next 10, 20, 30, and 40 years. The results regarding the first scenario implied that COE (Cost of Electricity) would be, respectively, 0.067, 0.145, 0.136, and 0.127 $/kWh. In addition to supplying the electricity required by the house, 2,687 $/yr could be earned by selling the excess electricity generated, and 5,759 kg of CO2 would be avoided a year. The findings as to the second scenario showed that LCOH (levelized cost of hydrogen) would equate to 3.62, 6.53, 6.34, and 5.93 $/kg, respectively, for the aforementioned project lifetimes. Furthermore, 2,464 $/yr would be the revenue after selling the surplus electricity, and 7,820 kg of CO2 would be saved, annually.

Author(s):  
Moritz Kölbach ◽  
Kira Rehfeld ◽  
Matthias M. May

We analyse the potential of solar hydrogen production in remote and cold world regions such as Antarctica and quantify the efficiency benefits of thermal coupling.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3437
Author(s):  
Andreas Rosenstiel ◽  
Nathalie Monnerie ◽  
Jürgen Dersch ◽  
Martin Roeb ◽  
Robert Pitz-Paal ◽  
...  

Global trade of green hydrogen will probably become a vital factor in reaching climate neutrality. The sunbelt of the Earth has a great potential for large-scale hydrogen production. One promising pathway to solar hydrogen is to use economically priced electricity from photovoltaics (PV) for electrochemical water splitting. However, storing electricity with batteries is still expensive and without storage only a small operating capacity of electrolyser systems can be reached. Combining PV with concentrated solar power (CSP) and thermal energy storage (TES) seems a good pathway to reach more electrolyser full load hours and thereby lower levelized costs of hydrogen (LCOH). This work introduces an energy system model for finding cost-optimal designs of such PV/CSP hybrid hydrogen production plants based on a global optimization algorithm. The model includes an operational strategy which improves the interplay between PV and CSP part, allowing also to store PV surplus electricity as heat. An exemplary study for stand-alone hydrogen production with an alkaline electrolyser (AEL) system is carried out. Three different locations with different solar resources are considered, regarding the total installed costs (TIC) to obtain realistic LCOH values. The study shows that a combination of PV and CSP is an auspicious concept for large-scale solar hydrogen production, leading to lower costs than using one of the technologies on its own. For today’s PV and CSP costs, minimum levelized costs of hydrogen of 4.04 USD/kg were determined for a plant located in Ouarzazate (Morocco). Considering the foreseen decrease in PV and CSP costs until 2030, cuts the LCOH to 3.09 USD/kg while still a combination of PV and CSP is the most economic system.


2013 ◽  
Vol 6 (7) ◽  
pp. 1983 ◽  
Author(s):  
Blaise A. Pinaud ◽  
Jesse D. Benck ◽  
Linsey C. Seitz ◽  
Arnold J. Forman ◽  
Zhebo Chen ◽  
...  

2016 ◽  
Vol 41 (2) ◽  
pp. 866-872 ◽  
Author(s):  
Aya M. Mohamed ◽  
Seham A. Shaban ◽  
Hussien A. El Sayed ◽  
Bahgat E. Alanadouli ◽  
Nageh K. Allam

Sign in / Sign up

Export Citation Format

Share Document