scholarly journals Improving Neural Machine Translation with AMR Semantic Graphs

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Long H. B. Nguyen ◽  
Viet H. Pham ◽  
Dien Dinh

The Seq2Seq model and its variants (ConvSeq2Seq and Transformer) emerge as a promising novel solution to the machine translation problem. However, these models only focus on exploiting knowledge from bilingual sentences without paying much attention to utilizing external linguistic knowledge sources such as semantic representations. Not only do semantic representations can help preserve meaning but they also minimize the data sparsity problem. However, to date, semantic information remains rarely integrated into machine translation models. In this study, we examine the effect of abstract meaning representation (AMR) semantic graphs in different machine translation models. Experimental results on the IWSLT15 English-Vietnamese dataset have proven the efficiency of the proposed model, expanding the use of external language knowledge sources to significantly improve the performance of machine translation models, especially in the application of low-resource language pairs.

Author(s):  
Linfeng Song ◽  
Daniel Gildea ◽  
Yue Zhang ◽  
Zhiguo Wang ◽  
Jinsong Su

It is intuitive that semantic representations can be useful for machine translation, mainly because they can help in enforcing meaning preservation and handling data sparsity (many sentences correspond to one meaning) of machine translation models. On the other hand, little work has been done on leveraging semantics for neural machine translation (NMT). In this work, we study the usefulness of AMR (abstract meaning representation) on NMT. Experiments on a standard English-to-German dataset show that incorporating AMR as additional knowledge can significantly improve a strong attention-based sequence-to-sequence neural translation model.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1589
Author(s):  
Yongkeun Hwang ◽  
Yanghoon Kim ◽  
Kyomin Jung

Neural machine translation (NMT) is one of the text generation tasks which has achieved significant improvement with the rise of deep neural networks. However, language-specific problems such as handling the translation of honorifics received little attention. In this paper, we propose a context-aware NMT to promote translation improvements of Korean honorifics. By exploiting the information such as the relationship between speakers from the surrounding sentences, our proposed model effectively manages the use of honorific expressions. Specifically, we utilize a novel encoder architecture that can represent the contextual information of the given input sentences. Furthermore, a context-aware post-editing (CAPE) technique is adopted to refine a set of inconsistent sentence-level honorific translations. To demonstrate the efficacy of the proposed method, honorific-labeled test data is required. Thus, we also design a heuristic that labels Korean sentences to distinguish between honorific and non-honorific styles. Experimental results show that our proposed method outperforms sentence-level NMT baselines both in overall translation quality and honorific translations.


2021 ◽  
pp. 1-10
Author(s):  
Zhiqiang Yu ◽  
Yuxin Huang ◽  
Junjun Guo

It has been shown that the performance of neural machine translation (NMT) drops starkly in low-resource conditions. Thai-Lao is a typical low-resource language pair of tiny parallel corpus, leading to suboptimal NMT performance on it. However, Thai and Lao have considerable similarities in linguistic morphology and have bilingual lexicon which is relatively easy to obtain. To use this feature, we first build a bilingual similarity lexicon composed of pairs of similar words. Then we propose a novel NMT architecture to leverage the similarity between Thai and Lao. Specifically, besides the prevailing sentence encoder, we introduce an extra similarity lexicon encoder into the conventional encoder-decoder architecture, by which the semantic information carried by the similarity lexicon can be represented. We further provide a simple mechanism in the decoder to balance the information representations delivered from the input sentence and the similarity lexicon. Our approach can fully exploit linguistic similarity carried by the similarity lexicon to improve translation quality. Experimental results demonstrate that our approach achieves significant improvements over the state-of-the-art Transformer baseline system and previous similar works.


2020 ◽  
Vol 34 (05) ◽  
pp. 8204-8211
Author(s):  
Jian Li ◽  
Xing Wang ◽  
Baosong Yang ◽  
Shuming Shi ◽  
Michael R. Lyu ◽  
...  

Recent NLP studies reveal that substantial linguistic information can be attributed to single neurons, i.e., individual dimensions of the representation vectors. We hypothesize that modeling strong interactions among neurons helps to better capture complex information by composing the linguistic properties embedded in individual neurons. Starting from this intuition, we propose a novel approach to compose representations learned by different components in neural machine translation (e.g., multi-layer networks or multi-head attention), based on modeling strong interactions among neurons in the representation vectors. Specifically, we leverage bilinear pooling to model pairwise multiplicative interactions among individual neurons, and a low-rank approximation to make the model computationally feasible. We further propose extended bilinear pooling to incorporate first-order representations. Experiments on WMT14 English⇒German and English⇒French translation tasks show that our model consistently improves performances over the SOTA Transformer baseline. Further analyses demonstrate that our approach indeed captures more syntactic and semantic information as expected.


2020 ◽  
Vol 34 (05) ◽  
pp. 8830-8837
Author(s):  
Xin Sheng ◽  
Linli Xu ◽  
Junliang Guo ◽  
Jingchang Liu ◽  
Ruoyu Zhao ◽  
...  

We propose a novel introspective model for variational neural machine translation (IntroVNMT) in this paper, inspired by the recent successful application of introspective variational autoencoder (IntroVAE) in high quality image synthesis. Different from the vanilla variational NMT model, IntroVNMT is capable of improving itself introspectively by evaluating the quality of the generated target sentences according to the high-level latent variables of the real and generated target sentences. As a consequence of introspective training, the proposed model is able to discriminate between the generated and real sentences of the target language via the latent variables generated by the encoder of the model. In this way, IntroVNMT is able to generate more realistic target sentences in practice. In the meantime, IntroVNMT inherits the advantages of the variational autoencoders (VAEs), and the model training process is more stable than the generative adversarial network (GAN) based models. Experimental results on different translation tasks demonstrate that the proposed model can achieve significant improvements over the vanilla variational NMT model.


2018 ◽  
Vol 6 ◽  
pp. 145-157 ◽  
Author(s):  
Zaixiang Zheng ◽  
Hao Zhou ◽  
Shujian Huang ◽  
Lili Mou ◽  
Xinyu Dai ◽  
...  

Existing neural machine translation systems do not explicitly model what has been translated and what has not during the decoding phase. To address this problem, we propose a novel mechanism that separates the source information into two parts: translated Past contents and untranslated Future contents, which are modeled by two additional recurrent layers. The Past and Future contents are fed to both the attention model and the decoder states, which provides Neural Machine Translation (NMT) systems with the knowledge of translated and untranslated contents. Experimental results show that the proposed approach significantly improves the performance in Chinese-English, German-English, and English-German translation tasks. Specifically, the proposed model outperforms the conventional coverage model in terms of both the translation quality and the alignment error rate.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Syed Abdul Basit Andrabi ◽  
Abdul Wahid

Machine translation is an ongoing field of research from the last decades. The main aim of machine translation is to remove the language barrier. Earlier research in this field started with the direct word-to-word replacement of source language by the target language. Later on, with the advancement in computer and communication technology, there was a paradigm shift to data-driven models like statistical and neural machine translation approaches. In this paper, we have used a neural network-based deep learning technique for English to Urdu languages. Parallel corpus sizes of around 30923 sentences are used. The corpus contains sentences from English-Urdu parallel corpus, news, and sentences which are frequently used in day-to-day life. The corpus contains 542810 English tokens and 540924 Urdu tokens, and the proposed system is trained and tested using 70 : 30 criteria. In order to evaluate the efficiency of the proposed system, several automatic evaluation metrics are used, and the model output is also compared with the output from Google Translator. The proposed model has an average BLEU score of 45.83.


2019 ◽  
Vol 45 (2) ◽  
pp. 267-292 ◽  
Author(s):  
Akiko Eriguchi ◽  
Kazuma Hashimoto ◽  
Yoshimasa Tsuruoka

Neural machine translation (NMT) has shown great success as a new alternative to the traditional Statistical Machine Translation model in multiple languages. Early NMT models are based on sequence-to-sequence learning that encodes a sequence of source words into a vector space and generates another sequence of target words from the vector. In those NMT models, sentences are simply treated as sequences of words without any internal structure. In this article, we focus on the role of the syntactic structure of source sentences and propose a novel end-to-end syntactic NMT model, which we call a tree-to-sequence NMT model, extending a sequence-to-sequence model with the source-side phrase structure. Our proposed model has an attention mechanism that enables the decoder to generate a translated word while softly aligning it with phrases as well as words of the source sentence. We have empirically compared the proposed model with sequence-to-sequence models in various settings on Chinese-to-Japanese and English-to-Japanese translation tasks. Our experimental results suggest that the use of syntactic structure can be beneficial when the training data set is small, but is not as effective as using a bi-directional encoder. As the size of training data set increases, the benefits of using a syntactic tree tends to diminish.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Thien Nguyen ◽  
Huu Nguyen ◽  
Phuoc Tran

Powerful deep learning approach frees us from feature engineering in many artificial intelligence tasks. The approach is able to extract efficient representations from the input data, if the data are large enough. Unfortunately, it is not always possible to collect large and quality data. For tasks in low-resource contexts, such as the Russian ⟶ Vietnamese machine translation, insights into the data can compensate for their humble size. In this study of modelling Russian ⟶ Vietnamese translation, we leverage the input Russian words by decomposing them into not only features but also subfeatures. First, we break down a Russian word into a set of linguistic features: part-of-speech, morphology, dependency labels, and lemma. Second, the lemma feature is further divided into subfeatures labelled with tags corresponding to their positions in the lemma. Being consistent with the source side, Vietnamese target sentences are represented as sequences of subtokens. Sublemma-based neural machine translation proves itself in our experiments on Russian-Vietnamese bilingual data collected from TED talks. Experiment results reveal that the proposed model outperforms the best available Russian  ⟶  Vietnamese model by 0.97 BLEU. In addition, automatic machine judgment on the experiment results is verified by human judgment. The proposed sublemma-based model provides an alternative to existing models when we build translation systems from an inflectionally rich language, such as Russian, Czech, or Bulgarian, in low-resource contexts.


2018 ◽  
Vol 26 (12) ◽  
pp. 2341-2354 ◽  
Author(s):  
Qiang Li ◽  
Derek F. Wong ◽  
Lidia S. Chao ◽  
Muhua Zhu ◽  
Tong Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document