scholarly journals Optimization: Molecular Communication Networks for Viral Disease Analysis Using Deep Leaning Autoencoder

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
A. R. Junejo ◽  
Mohammed K. A. Kaabar ◽  
Xiang Li

Developing new treatments for emerging infectious diseases in infectious and noninfectious diseases has attracted a particular attention. The emergence of viral diseases is expected to accelerate; these data indicate the need for a proactive approach to develop widely active family specific and cross family therapies for future disease outbreaks. Viral disease such as pneumonia, severe acute respiratory syndrome type 2, HIV infection, and Hepatitis-C virus can cause directly and indirectly cardiovascular disease (CVD). Emphasis should be placed not only on the development of broad-spectrum molecules and antibodies but also on host factor therapy, including the reutilization of previously approved or developing drugs. Another new class of therapeutics with great antiviral therapeutic potential is molecular communication networks using deep learning autoencoder (DL-AEs). The use of DL-AEs for diagnosis and prognosis prediction of infectious and noninfectious diseases has attracted a particular attention. MCN is map to molecular signaling and communication that are found inside and outside the human body where the goal is to develop a new black box mechanism that can serve the future robust healthcare industry (HCI). MCN has the ability to characterize the signaling process between cells and infectious disease locations at various levels of the human body called point-to-point MCN through DL-AE and provide targeted drug delivery (TDD) environment. Through MCN, and DL-AE healthcare provider can remotely measure biological signals and control certain processes in the required organism for the maintenance of the patient’s health state. We use biomicrodevices to promote the real-time monitoring of human health and storage of the gathered data in the cloud. In this paper, we use the DL-based AE approach to design and implement a new drug source and target for the MCN under white Gaussian noise. Simulation results show that transceiver executions for a given medium model that reduces the bit error rate which can be learned. Then, next development of molecular diagnosis such as heart sounds is classified. Furthermore, biohealth interface for the inside and outside human body mechanism is presented, comparative perspective with up-to-date current situation about MCN.

2021 ◽  
Author(s):  
Soushieta Jagadesh ◽  
Marine Combe ◽  
Mathieu Nacher ◽  
Rodolphe Elie Gozlan

Abstract Background Zoonotic diseases account for more than 70% of emerging infectious diseases. Due to their increasing incidence, and impact on global health and economy, anticipating the emergence of zoonoses is a major public health challenge. Here, we use a biogeographic approach to predict future hotspots and determine the factors influencing disease emergence. We have focused on three viral disease groups of concern: Filoviridae, Coronaviridae, and Henipaviruses. Methods We modelled presence-absence data in spatially explicit binomial and zero-inflation binomial logistic regression with and without autoregression. Presence data were extracted from published studies for the three EID groups. Various environmental and demographical rasters were used to explain the distribution of EIDs. True Skill Statistic and deviance parameters were used to compare the accuracy of the different models. Results For each group of viruses, we were able to identify and map areas at high risk of disease emergence based on the spatial distribution of disease reservoirs and hosts, as well as data on the distribution of each disease. Common influencing drivers are climatic covariates (minimum temperature and rainfall) and human-induced land modifications. Conclusions Using topographical, climatic and previous disease outbreaks reports, we show that we can identify and predict future high-risk areas for disease emergence, such as the current COVID-19 pandemic, and their specific underlying human and environmental drivers. We suggest that such a predictive approach to EIDs should be carefully considered in the development of active surveillance systems for pathogen emergence and epidemics at local and global scales.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 119361-119375
Author(s):  
Abdulaziz Al-Helali ◽  
Ben Liang ◽  
Nidal Nasser

2019 ◽  
Vol 20 (8) ◽  
pp. 800-807 ◽  
Author(s):  
Jose Luis Marzo ◽  
Josep Miquel Jornet ◽  
Massimiliano Pierobon

By interconnecting nanomachines and forming nanonetworks, the capacities of single nanomachines are expected to be enhanced, as the ensuing information exchange will allow them to cooperate towards a common goal. Nowadays, systems normally use electromagnetic signals to encode, send and receive information, however, in a novel communication paradigm, molecular transceivers, channel models or protocols use molecules. This article presents the current developments in nanomachines along with their future architecture to better understand nanonetwork scenarios in biomedical applications. Furthermore, to highlight the communication needs between nanomachines, two applications for nanonetworks are also presented: i) a new networking paradigm, called the Internet of NanoThings, that allows nanoscale devices to interconnect with existing communication networks, and ii) Molecular Communication, where the propagation of chemical compounds like drug particles, carry out the information exchange.


Author(s):  
Igor Adolfo Dexheimer Paploski ◽  
Rahul Kumar Bhojwani ◽  
Juan Manuel Sanhueza ◽  
Cesar Agustín Corzo ◽  
Kimberly VanderWaal

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Binaya Wasti ◽  
Zhifeng Chen ◽  
Yi Ke ◽  
Wen Tao Duan ◽  
Shao-Kun Liu ◽  
...  

Sex hormone has become a “hot topic” to evaluate the hormonal therapeutic potential in severe asthma. Th17 cell is one of the main influencing factors involved in the pathogenesis of severe asthma, hence also called as kernel of severe asthma, and Th17 subtype of non-T2 asthma is less responsive (resistance) to inhaled corticosteroid (ICS), so severe in nature. Methyl-CpG binding domain protein 2 (MBD2) is overexpressed and regulates the Th17 differentiation, showing the possibility of therapeutic target in treating Th17 mediated severe asthma. Sex hormone fluctuates at the different physiobiological conditions of the human body and affects the asthma pathobiology showing its role in asthma prevalence, severity, remission, and therapy. This review briefly overviews the sex hormones, their influence in asthma at the different physiobiological conditions of human body, and MBD2 severe asthma connection with the possible therapeutic potential of sex steroids in MBD2 mediated Th17 predominant severe asthma. Male sex hormone tends to show a beneficial effect and possibly downregulates the expression of Th17 cells via regulating MBD2 through a mechanism distinct from corticosteroid treatment and guides us towards discovery of new therapeutic agent, reduces the asthma-related complications, and promotes long-term survival by lowering the risk of therapy-resistant issues of old age severe asthma.


Sign in / Sign up

Export Citation Format

Share Document