scholarly journals Bridge Extraction Algorithm Based on Deep Learning and High-Resolution Satellite Image

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Wenbing Yang ◽  
Xiaoqi Gao ◽  
Chunlei Zhang ◽  
Feng Tong ◽  
Guantian Chen ◽  
...  

This paper proposes a novel method of extracting roads and bridges from high-resolution remote sensing images based on deep learning. Edge detection is performed on the images in the road area along with the road skeleton line, and the result of the detected binary edge is vectorized. The interference of protective belts on both sides of the road, road vehicles, road green belts, traffic signs, etc. and the shadow interference of the bridge itself are eliminated to determine the parallel sides of the road. The bridge features on the road are used to locate the detected bridge and obtain information such as the location, length, width, and direction of the bridge, verifying the experimental results of the Shaoguan Le point images. In addition, in order to learn higher-level road feature information, the algorithm in this paper introduces the hollow convolution and multicore pooling modules. Secondly, the residual refinement network further refines the output of the prediction network to improve the ambiguity of the prediction network results. In addition, in view of the small proportion of road pixels in remote sensing images, the network also integrates binary cross entropy, structural similarity, and intersection ratio loss function to reduce road information loss. The applicability of the proposed study was tested, and the results show that the algorithm is very effective for the extraction of road and bridge targets.

2020 ◽  
Vol 12 (18) ◽  
pp. 2985 ◽  
Author(s):  
Yeneng Lin ◽  
Dongyun Xu ◽  
Nan Wang ◽  
Zhou Shi ◽  
Qiuxiao Chen

Automatic road extraction from very-high-resolution remote sensing images has become a popular topic in a wide range of fields. Convolutional neural networks are often used for this purpose. However, many network models do not achieve satisfactory extraction results because of the elongated nature and varying sizes of roads in images. To improve the accuracy of road extraction, this paper proposes a deep learning model based on the structure of Deeplab v3. It incorporates squeeze-and-excitation (SE) module to apply weights to different feature channels, and performs multi-scale upsampling to preserve and fuse shallow and deep information. To solve the problems associated with unbalanced road samples in images, different loss functions and backbone network modules are tested in the model’s training process. Compared with cross entropy, dice loss can improve the performance of the model during training and prediction. The SE module is superior to ResNext and ResNet in improving the integrity of the extracted roads. Experimental results obtained using the Massachusetts Roads Dataset show that the proposed model (Nested SE-Deeplab) improves F1-Score by 2.4% and Intersection over Union by 2.0% compared with FC-DenseNet. The proposed model also achieves better segmentation accuracy in road extraction compared with other mainstream deep-learning models including Deeplab v3, SegNet, and UNet.


2020 ◽  
Vol 12 (5) ◽  
pp. 765 ◽  
Author(s):  
Calimanut-Ionut Cira ◽  
Ramon Alcarria ◽  
Miguel-Ángel Manso-Callejo ◽  
Francisco Serradilla

Remote sensing imagery combined with deep learning strategies is often regarded as an ideal solution for interpreting scenes and monitoring infrastructures with remarkable performance levels. In addition, the road network plays an important part in transportation, and currently one of the main related challenges is detecting and monitoring the occurring changes in order to update the existent cartography. This task is challenging due to the nature of the object (continuous and often with no clearly defined borders) and the nature of remotely sensed images (noise, obstructions). In this paper, we propose a novel framework based on convolutional neural networks (CNNs) to classify secondary roads in high-resolution aerial orthoimages divided in tiles of 256 × 256 pixels. We will evaluate the framework’s performance on unseen test data and compare the results with those obtained by other popular CNNs trained from scratch.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 153394-153402
Author(s):  
Qulin Tan ◽  
Juan Ling ◽  
Jun Hu ◽  
Xiaochun Qin ◽  
Jiping Hu

2019 ◽  
Vol 10 (4) ◽  
pp. 381-390 ◽  
Author(s):  
Ye Li ◽  
Lele Xu ◽  
Jun Rao ◽  
Lili Guo ◽  
Zhen Yan ◽  
...  

2020 ◽  
Vol 12 (22) ◽  
pp. 3845
Author(s):  
Zhiyu Xu ◽  
Yi Zhou ◽  
Shixin Wang ◽  
Litao Wang ◽  
Feng Li ◽  
...  

The real-time, accurate, and refined monitoring of urban green space status information is of great significance in the construction of urban ecological environment and the improvement of urban ecological benefits. The high-resolution technology can provide abundant information of ground objects, which makes the information of urban green surface more complicated. The existing classification methods are challenging to meet the classification accuracy and automation requirements of high-resolution images. This paper proposed a deep learning classification method for urban green space based on phenological features constraints in order to make full use of the spectral and spatial information of green space provided by high-resolution remote sensing images (GaoFen-2) in different periods. The vegetation phenological features were added as auxiliary bands to the deep learning network for training and classification. We used the HRNet (High-Resolution Network) as our model and introduced the Focal Tversky Loss function to solve the sample imbalance problem. The experimental results show that the introduction of phenological features into HRNet model training can effectively improve urban green space classification accuracy by solving the problem of misclassification of evergreen and deciduous trees. The improvement rate of F1-Score of deciduous trees, evergreen trees, and grassland were 0.48%, 4.77%, and 3.93%, respectively, which proved that the combination of vegetation phenology and high-resolution remote sensing image can improve the results of deep learning urban green space classification.


2019 ◽  
Vol 41 (5) ◽  
pp. 2022-2046 ◽  
Author(s):  
Runmin Dong ◽  
Weijia Li ◽  
Haohuan Fu ◽  
Lin Gan ◽  
Le Yu ◽  
...  

2018 ◽  
Vol 10 (9) ◽  
pp. 1461 ◽  
Author(s):  
Yongyang Xu ◽  
Zhong Xie ◽  
Yaxing Feng ◽  
Zhanlong Chen

The road network plays an important role in the modern traffic system; as development occurs, the road structure changes frequently. Owing to the advancements in the field of high-resolution remote sensing, and the success of semantic segmentation success using deep learning in computer version, extracting the road network from high-resolution remote sensing imagery is becoming increasingly popular, and has become a new tool to update the geospatial database. Considering that the training dataset of the deep convolutional neural network will be clipped to a fixed size, which lead to the roads run through each sample, and that different kinds of road types have different widths, this work provides a segmentation model that was designed based on densely connected convolutional networks (DenseNet) and introduces the local and global attention units. The aim of this work is to propose a novel road extraction method that can efficiently extract the road network from remote sensing imagery with local and global information. A dataset from Google Earth was used to validate the method, and experiments showed that the proposed deep convolutional neural network can extract the road network accurately and effectively. This method also achieves a harmonic mean of precision and recall higher than other machine learning and deep learning methods.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Linyi Li ◽  
Tingbao Xu ◽  
Yun Chen

In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.


Sign in / Sign up

Export Citation Format

Share Document