scholarly journals Nanoscale Modification of Titanium Implants Improves Behaviors of Bone Mesenchymal Stem Cells and Osteogenesis In Vivo

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Huangdi Li ◽  
Jinghui Huang ◽  
Yanpeng Wang ◽  
Ziyuan Chen ◽  
Xing Li ◽  
...  

The surficial micro/nanotopography and physiochemical properties of titanium implants are essential for osteogenesis. However, these surface characters’ influence on stem cell behaviors and osteogenesis is still not fully understood. In this study, titanium implants with different surface roughness, nanostructure, and wettability were fabricated by further nanoscale modification of sandblasted and acid-etched titanium (SLA: sandblasted and acid-etched) by H2O2 treatment (hSLAs: H2O2 treated SLA). The rat bone mesenchymal stem cells (rBMSCs: rat bone mesenchymal stem cells) are cultured on SLA and hSLA surfaces, and the cell behaviors of attachment, spreading, proliferation, and osteogenic differentiation are further analyzed. Measurements of surface characteristics show hSLA surface is equipped with nanoscale pores on microcavities and appeared to be hydrophilic. In vitro cell studies demonstrated that the hSLA titanium significantly enhances cell response to attachment, spreading, and proliferation. The hSLAs with proper degree of H2O2 etching (h1SLA: treating SLA with H2O2 for 1 hour) harvest the best improvement of differentiation of rBMSCs. Finally, the osteogenesis in beagle dogs was tested, and the h1SLA implants perform much better bone formation than SLA implants. These results indicate that the nanoscale modification of SLA titanium surface endowing nanostructures, roughness, and wettability could significantly improve the behaviors of bone mesenchymal stem cells and osteogenesis on the scaffold surface. These nanoscale modified SLA titanium scaffolds, fabricated in our study with enhanced cell affinity and osteogenesis, had great potential for implant dentistry.

2016 ◽  
Vol 367 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Hua-ji Jiang ◽  
Xing-gui Tian ◽  
Shou-bin Huang ◽  
Guo-rong Chen ◽  
Min-jun Huang ◽  
...  

2020 ◽  
pp. 1-13
Author(s):  
Lu Deng ◽  
Chang Wang ◽  
Chao He ◽  
Li Chen

OBJECTIVE: Bone mesenchymal stem cells (BMSCs) have been widely researched in cancer treatment, including hepatocellular carcinoma (HCC). This study intended to discuss the mechanism of miR-20a-3p in BMSCs-extracellular vesicles (EVs) in HCC apoptosis. METHODS: BMSCs were isolated and identified. EVs derived from BMSCs were extracted and identified. After overexpressing or inhibiting miR-20a-3p expression in BMSCs, EVs were extracted and acted on HCC cells and transplanted tumors. HCC cell apoptosis in the treatment of BMSCs-conditioned medium, BMSCs-EVs and/or miR-20a-3p mimic/inhibitor were evaluated, with the detection of levels of TRAIL and TRAIL-related proteins. A functional rescue experiment about c-FLIP was carried out in HCC cells. The target binding relationship between miR-20a-3p and c-FLIP was detected. The subcutaneous tumorigenesis model of mice was established and injected with BMSCs-EVs to estimate the effect of BMSCs-EVs-miR-20a-3p on HCC growth. RESULTS: EVs isolated from BMSCs conditioned medium promoted the apoptosis of HCC cells. After BMSCs-EVs treatment, TRAIL levels, downstream proteins and miR-20a-3p were increased significantly, but the expression of c-FLIP was decreased. miR-20a-3p could target c-FLIP. BMSCs-EVs inhibited the growth of HCC cells, decreased c-FLIP expression, increased TRAIL levels, and promote the of HCC cell apoptosis. BMSCs-EVs with overexpressing miR-20a-3p further enhanced the apoptotic effect of HCC cells in vitro and in vivo. CONCLUSION: BMSCs-EVs-carried miR-20a-3p targets c-FLIP and increases TRAIL levels in HCC cells, thus promoting TRAIL-related apoptosis.


2011 ◽  
Vol 10 (6) ◽  
pp. 686-691 ◽  
Author(s):  
Al-Timmemi Hameed ◽  
R. Ibrahim ◽  
Al-Jashamy Karim ◽  
Abz Zuki ◽  
Ti. Azmi ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Di Wu ◽  
Xiao Chang ◽  
Jingjing Tian ◽  
Lin Kang ◽  
Yuanhao Wu ◽  
...  

Abstract Background The therapeutic potential of exosomes derived from stem cells has attracted increasing interest recently, because they can exert similar paracrine functions of stem cells and overcome the limitations of stem cells transplantation. Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) have been confirmed to promote osteogenesis and angiogenesis. The magnetic nanoparticles (eg. Fe3O4, γ-Fe2O3) combined with a static magnetic field (SMF) has been commonly used to increase wound healing and bone regeneration. Hence, this study aims to evaluate whether exosomes derived from BMSCs preconditioned with a low dose of Fe3O4 nanoparticles with or without the SMF, exert superior pro-osteogenic and pro-angiogenic activities in bone regeneration and the underlying mechanisms involved. Methods Two novel types of exosomes derived from preconditioned BMSCs that fabricated by regulating the contents with the stimulation of magnetic nanoparticles and/or a SMF. Then, the new exosomes were isolated by ultracentrifugation and characterized. Afterwards, we conducted in vitro experiments in which we measured osteogenic differentiation, cell proliferation, cell migration, and tube formation, then established an in vivo critical-sized calvarial defect rat model. The miRNA expression profiles were compared among the exosomes to detect the potential mechanism of improving osteogenesis and angiogenesis. At last, the function of exosomal miRNA during bone regeneration was confirmed by utilizing a series of gain- and loss-of-function experiments in vitro. Results 50 µg/mL Fe3O4 nanoparticles and a 100 mT SMF were chosen as the optimum magnetic conditions to fabricate two new exosomes, named BMSC-Fe3O4-Exos and BMSC-Fe3O4-SMF-Exos. They were both confirmed to enhance osteogenesis and angiogenesis in vitro and in vivo compared with BMSC-Exos, and BMSC-Fe3O4-SMF-Exos had the most marked effect. The promotion effect was found to be related to the highly riched miR-1260a in BMSC-Fe3O4-SMF-Exos. Furthermore, miR-1260a was verified to enhance osteogenesis and angiogenesis through inhibition of HDAC7 and COL4A2, respectively. Conclusion These results suggest that low doses of Fe3O4 nanoparticles combined with a SMF trigger exosomes to exert enhanced osteogenesis and angiogenesis and that targeting of HDAC7 and COL4A2 by exosomal miR-1260a plays a crucial role in this process. This work could provide a new protocol to promote bone regeneration for tissue engineering in the future. Graphical abstract


2008 ◽  
Vol 48 ◽  
pp. S191
Author(s):  
S.H. Bae ◽  
J.Y. Choi ◽  
S.K. Yoon ◽  
K.H. Yoon ◽  
B.S. Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document