scholarly journals Effects of Low Reynolds Number on Wake-Generated Unsteady Flow of an Axial-Flow Turbine Rotor

2005 ◽  
Vol 2005 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Takayuki Matsunuma ◽  
Yasukata Tsutsui

The unsteady flow field downstream of axial-flow turbine rotors at low Reynolds numbers was investigated experimentally using hot-wire probes. Reynolds number, based on rotor exit velocity and rotor chord lengthReout,RT, was varied from3.2×104to12.8×104at intervals of1.0×104by changing the flow velocity of the wind tunnel. The time-averaged and time-dependent distributions of velocity and turbulence intensity were analyzed to determine the effect of Reynolds number. The reduction of Reynolds number had a marked influence on the turbine flow field. The regions of high turbulence intensity due to the wake and the secondary vortices were increased dramatically with the decreasing Reynolds number. The periodic fluctuation of the flow due to rotor-stator interaction also increased with the decreasing Reynolds number. The energy-dissipation thickness of the rotor midspan wake at the low Reynolds numberReout,RT=3.2×104was1.5times larger than that at the high Reynolds numberReout,RT=12.8×104. The curve of the−0.2power of the Reynolds number agreed with the measured energy-dissipation thickness at higher Reynolds numbers. However, the curve of the−0.4power law fitted more closely than the curve of the−0.2power law at lower Reynolds numbers below6.4×104.

Author(s):  
Takayuki Matsunuma

The unsteady flow field of an annular turbine rotor was investigated experimentally using a laser Doppler velocimetry (LDV) system. Detailed measurements of the time-averaged and time-resolved distributions of the velocity, flow angle, and turbulence intensity, etc. were carried out at a very low Reynolds number condition, Reout = 3.5 × 104. The data obtained were analyzed from the viewpoints of both an absolute (stationary) frame of reference and a relative (rotating) frame of reference. The effect of the turbine nozzle wake and secondary vortices on the flow field inside the rotor passage was clearly captured. It was found that the nozzle wake and secondary vortices are suddenly distorted at the rotor inlet, because of the rotating potential field of the rotor. The nozzle flow (wake and passage vortices) and the rotor flow (boundary layer, wake, tip leakage vortex, and passage vortices) interact intensively inside the rotor passage.


2006 ◽  
Vol 129 (2) ◽  
pp. 360-371 ◽  
Author(s):  
Takayuki Matsunuma

The unsteady flow field of an annular turbine rotor was investigated experimentally using a laser Doppler velocimetry (LDV) system. Detailed measurements of the time-averaged and time-resolved distributions of the velocity, flow angle, turbulence intensity, etc., were carried out at a very low Reynolds number condition, Reout=3.5×104. The data obtained were analyzed from the viewpoints of both an absolute (stationary) frame of reference and a relative (rotating) frame of reference. The effect of the turbine nozzle wake and secondary vortices on the flow field inside the rotor passage was clearly captured. It was found that the nozzle wake and secondary vortices are suddenly distorted at the rotor inlet, because of the rotating potential field of the rotor. The nozzle flow (wake and passage vortices) and the rotor flow (boundary layer, wake, tip leakage vortex, and passage vortices) interact intensively inside the rotor passage.


2005 ◽  
Vol 57 (3) ◽  
pp. 116-120 ◽  
Author(s):  
Suat Canbazoğlu ◽  
Fazıl Canbulut

PurposeThe main objective of this study was to obtain the flow restricting capacity by determining their flow coefficients and to investigate the unsteady flow with low Reynolds number in the flow‐restricting devices such as orifices and capillary tubes having small diameters.Design/methodology/approachThere is an enormous literature on the flow of Newtonian fluids through capillaries and orifices particularly in many application fields of the mechanical and chemical engineering. But most of the experimental results in literature are given for steady flows at moderate and high Reynolds numbers (Re>500). In this study, the unsteady flow at low Reynolds number (10<Re<650) through flow‐restricting devices such as orifices and capillary tubes having very small diameters between 0.35 and 0.70 mm were experimentally investigated.FindingsThe capillary tubes have much more capillarity property with respect to equal diameter orifices. Increasing the ratio of capillary tube length to tube diameter and decreasing the ratio of orifice diameter to pipe diameter before orifice increase the throttling or restricting property of the orifices and the capillary tubes. The orifices can be preferred to the capillary tubes having the same diameter at the same system pressure for the hydraulic systems or circuits requiring small velocity variations. The capillary tubes provide higher pressure losses and they can be also used as hydraulic accumulators in hydraulic control devices to attenuate flow‐induced vibrations because of their large pressure coefficients. An important feature of the results obtained for capillary tubes and small orifices is that as the d/D for orifices increases and the L/d reduces for capillary tubes, higher values C are obtained and the transition from viscous to inertia‐controlled flow appears to take place at lower Reynolds numbers. This may be explained by the fact that for small orifices with high d/D ratios and for capillary tubes with small L/d ratios, the losses due to viscous shear are small. Another important feature of the results is that the least variations in C for small orifices and the higher variations in C for capillary tubes occur when the d/D and L/d ratios are smallest. This has favourable implications in hydraulic control devices since a constant value for the C may be assumed even at relatively low values of Re.Originality/valueTo the authors' knowledge, there is not enough information in the literature about the flow coefficients of unsteady flows through capillary tubes and small orifices at low Reynolds numbers. This paper fulfils this gap.


Author(s):  
Takayuki Matsunuma ◽  
Yasukata Tsutsui

In this study, the unsteady flow field at midspan in an axial-flow turbine rotor at low Reynolds number (Reout,RT = 3.6×104) was investigated experimentally using a laser Doppler velocimetry (LDV) system. The time-averaged and time-dependent distributions of velocity, flow angle, vorticity, turbulence intensity, and Reynolds stress were analyzed in terms of both absolute and relative frames of reference. In the relative frame of reference, the nozzle wake had a slip velocity relative to the mean flow, which caused the wake fluid to migrate across the rotor passage and accumulate on the rotor suction surface. The effect of the nozzle wake on the flow field inside the rotor was determined qualitatively and quantitatively. The flow separation occurred at the rotor suction surface because of the low Reynolds number. The position of the separation onset fluctuated periodically as much as about 10% of the rotor axial-chord by the rotor-stator interaction. The turbulence in the wake region was anisotropy, and it exhibited strong Reynolds stress.


1992 ◽  
Vol 114 (1) ◽  
pp. 135-142 ◽  
Author(s):  
J. Peterson ◽  
Y. Bayazitoglu

The current study examines the transition region of axisymmetric isothermal and buoyant jets of low Reynolds number, directed vertically upward into a stagnant, unstratified ambient. The region in which measurements were obtained allows examination of two types of transition occurring in the jet: from nozzle exit dominated to fully developed, and from momentum to buoyancy-dominated flow. Isothermal velocity data were acquired using a two-channel laser-Doppler anemometer for Reynolds numbers ranging from 850 to 7405. The buoyant cases studied had Froude numbers ranging from 12 to 6425 and Reynolds numbers from 525 to 6500. In each case data were taken from 5 to 44 nozzle diameters downstream. Curve fit approximations of the data were developed by assuming polynomial similarity profiles for the measured quantities. Each profile was individually curve fit because in the transition region under consideration the flow field is not necessarily similar. Profile constants were then curve fit to determine profile variation as a function of nozzle exit parameters and downstream location. These allow prediction of the downstream velocity flow field and turbulent flow field as a function of the Reynolds number, Froude number, and density ratio at the nozzle exit. Profile width and entrainment increased at low Reynolds number. Axial and radial velocity fluctuations were found to increase at low Reynolds number. The buoyant cases studied were found to have lower velocity fluctuations and significantly lower Reynolds stresses than isothermal cases of similar Reynolds number.


Author(s):  
Kenneth W. Van Treuren ◽  
Terrence Simon ◽  
Marc von Koller ◽  
Aaron R. Byerley ◽  
James W. Baughn ◽  
...  

With the new generation of gas turbine engines, low Reynolds number flows have become increasingly important. Designers must properly account for transition from laminar to turbulent flow and separation of the flow from the suction surface, which is strongly dependent upon transition. Of interest to industry are Reynolds numbers based upon suction surface length and flow exit velocity below 150,000 and as low as 25,000. In this paper, the extreme low end of this Reynolds number range is documented by way of pressure distributions, loss coefficients and identification of separation zones. Reynolds numbers of 25,000 and 50,000 and with 1% and 8–9% turbulence intensity of the approach flow (Free Stream Turbulence Intensity, FSTI) were investigated. At 25,000 Reynolds number and low FSTI, the suction surface displayed a strong and steady separation region. Raising the turbulence intensity resulted in a very unsteady separation region of nearly the same size on the suction surface. Vortex generators were added to the suction surface, but they appeared to do very little at this Reynolds number. At the higher Reynolds number of 50,000, the low-FSTI case was strongly separated on the downstream portion of the suction surface. The separation zone was eliminated when the turbulence level was increased to 8–9%. Vortex generators were added to the suction surface of the low-FSTI case. In this instance, the vortices were able to provide the mixing needed to reestablish flow attachment. This paper shows that massive separation at very low Reynolds numbers (25,000) is persistent, in spite of elevated FSTI and added vortices. However, at a higher Reynolds number, there is opportunity for flow reattachment either with elevated freestream turbulence or with added vortices. This may be the first documentation of flow behavior at such low Reynolds numbers. Though undesirable to operate under these conditions, it is important to know what to expect and how performance may be improved if such conditions are unavoidable.


Author(s):  
Yang Zhang ◽  
Zhou Zhou ◽  
Xu Li

Based on the complex flow field of vertical takeoff and landing (VTOL) aircraft with distributed propulsion, the influence of the turbulence intensity and gradient of turbulence intensity on the aerodynamic characteristics of two-dimensional airfoil under low Reynolds number was studied by solving the unsteady Reynolds averaged Navier-Stokes (URANS) Equation based on the c-type structural mesh and γ-Reθt transition model. The aerodynamic characteristics of NACA0012 airfoil at different turbulence intensities and Reynolds numbers are simulated and compared with the experimental data, which verifies the reliability of the low Reynolds number calculation method. Meanwhile, the effects of the different low Reynolds number and gradient of turbulence intensity on the aero-dynamic characteristics of airfoil are studied, and the effect mechanism of the turbulence on the flow field around airfoil is analyzed. It shows that the flow characteristics of the airfoil with high turbulence or Reynolds number are more stable, the separation bubble size is smaller, the flow separation is delayed, and the stall angle of attack is larger, but the effect of the two mechanisms on the earlier transition is different. The influence of the turbulence gradient on the airfoil is limited by the Reynolds number, and the flow separation, transition and reattachment of the airfoil with high turbulence gradient are advance. The generation and evolution of the laminar separation bubble are closely related to the turbulence intensity and Reynolds number, and its scale and location also affect the aerodynamic characteristics of the airfoil.


Author(s):  
Hauke Ehlers ◽  
Robert Konrath ◽  
Marcel Börner ◽  
Ralf Wokoeck ◽  
Rolf Radespiel

2001 ◽  
Author(s):  
Miles Greiner ◽  
Paul F. Fischer ◽  
Henry Tufo

Abstract The effect of flow rate modulation on low Reynolds number heat transfer enhancement in a transversely grooved passage was numerically simulated using a two-dimensional spectral element technique. Simulations were performed at subcritical Reynolds numbers of Rem = 133 and 267, with 20% and 40% flow rate oscillations. The net pumping power required to modulate the flow was minimized as the forcing frequency approached the predicted natural frequency. However, mixing and heat transfer levels both increased as the natural frequency was approached. Oscillatory forcing in a grooved passage requires two orders of magnitude less pumping power than flat passage systems for the same heat transfer level. Hydrodynamic resonance appears to be an effective method of increasing heat transfer in low Reynolds number systems where pumping power is at a premium, such as micro heat transfer applications.


2000 ◽  
Author(s):  
Ajit Pal Singh ◽  
S. H. Winoto ◽  
D. A. Shah ◽  
K. G. Lim ◽  
Robert E. K. Goh

Abstract Performance characteristics of some low Reynolds number airfoils for the use in micro air vehicles (MAVs) are computationally studied using XFOIL at a Reynolds number of 80,000. XFOIL, which is based on linear-vorticity stream function panel method coupled with a viscous integral formulation, is used for the analysis. In the first part of the study, results obtained from the XFOIL have been compared with available experimental data at low Reynolds numbers. XFOIL is then used to study relative aerodynamic performance of nine different airfoils. The computational analysis has shown that the S1223 airfoil has a relatively better performance than other airfoils considered for the analysis.


Sign in / Sign up

Export Citation Format

Share Document