Measurements in a Turbine Cascade Flow Under Ultra Low Reynolds Number Conditions

Author(s):  
Kenneth W. Van Treuren ◽  
Terrence Simon ◽  
Marc von Koller ◽  
Aaron R. Byerley ◽  
James W. Baughn ◽  
...  

With the new generation of gas turbine engines, low Reynolds number flows have become increasingly important. Designers must properly account for transition from laminar to turbulent flow and separation of the flow from the suction surface, which is strongly dependent upon transition. Of interest to industry are Reynolds numbers based upon suction surface length and flow exit velocity below 150,000 and as low as 25,000. In this paper, the extreme low end of this Reynolds number range is documented by way of pressure distributions, loss coefficients and identification of separation zones. Reynolds numbers of 25,000 and 50,000 and with 1% and 8–9% turbulence intensity of the approach flow (Free Stream Turbulence Intensity, FSTI) were investigated. At 25,000 Reynolds number and low FSTI, the suction surface displayed a strong and steady separation region. Raising the turbulence intensity resulted in a very unsteady separation region of nearly the same size on the suction surface. Vortex generators were added to the suction surface, but they appeared to do very little at this Reynolds number. At the higher Reynolds number of 50,000, the low-FSTI case was strongly separated on the downstream portion of the suction surface. The separation zone was eliminated when the turbulence level was increased to 8–9%. Vortex generators were added to the suction surface of the low-FSTI case. In this instance, the vortices were able to provide the mixing needed to reestablish flow attachment. This paper shows that massive separation at very low Reynolds numbers (25,000) is persistent, in spite of elevated FSTI and added vortices. However, at a higher Reynolds number, there is opportunity for flow reattachment either with elevated freestream turbulence or with added vortices. This may be the first documentation of flow behavior at such low Reynolds numbers. Though undesirable to operate under these conditions, it is important to know what to expect and how performance may be improved if such conditions are unavoidable.

2001 ◽  
Vol 124 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Kenneth W. Van Treuren ◽  
Terrence Simon ◽  
Marc von Koller ◽  
Aaron R. Byerley ◽  
James W. Baughn ◽  
...  

With the new generation of gas turbine engines, low Reynolds number flows have become increasingly important. Designers must properly account for transition from laminar to turbulent flow and separation of the flow from the suction surface, which is strongly dependent upon transition. Of interest to industry are Reynolds numbers based upon suction surface length and flow exit velocity below 150,000 and as low as 25,000. In this paper, the extreme low end of this Reynolds number range is documented by way of pressure distributions, loss coefficients, and identification of separation zones. Reynolds numbers of 25,000 and 50,000 and with 1 percent and 8-9 percent turbulence intensity of the approach flow (free-stream turbulence intensity, FSTI) were investigated. At 25,000 Reynolds number and low FSTI, the suction surface displayed a strong and steady separation region. Raising the turbulence intensity resulted in a very unsteady separation region of nearly the same size on the suction surface. Vortex generators were added to the suction surface, but they appeared to do very little at this Reynolds number. At the higher Reynolds number of 50,000, the low-FSTI case was strongly separated on the downstream portion of the suction surface. The separation zone was eliminated when the turbulence level was increased to 8-9 percent. Vortex generators were added to the suction surface of the low-FSTI case. In this instance, the vortices were able to provide the mixing needed to re-establish flow attachment. This paper shows that massive separation at very low Reynolds numbers (25,000) is persistent, in spite of elevated FSTI and added vortices. However, at a higher Reynolds number, there is opportunity for flow reattachment either with elevated free-stream turbulence or with added vortices. This may be the first documentation of flow behavior at such low Reynolds numbers. Although it is undesirable to operate under these conditions, it is important to know what to expect and how performance may be improved if such conditions are unavoidable.


1965 ◽  
Vol 180 (1) ◽  
pp. 331-356 ◽  
Author(s):  
L. J. Kastner ◽  
J. C. McVeigh

In view of the importance of accurate measurement of flow rate at low Reynolds numbers, there have been numerous attempts to develop metering devices having constant discharge coefficients in the range of pipe Reynolds numbers between about 3000 and 200 and even below this latter value, and some of these attempts have achieved a reasonable degrees of success. Nevertheless, some confusion exists regarding the dimensions and range of utility of certain designs which have been recommended and further information is necessary in order that the situation may be clarified. The aims of the present investigation, which is believed to be wider in scope than any published in this field in recent years, were to review and correlate existing knowledge and to make an experimental study of the properties of various types of orifice in the low range of Reynolds numbers. Arising from this it was hoped that a design might be evolved which not only had a satisfactorily constant discharge coefficient throughout the range but was also simple to manufacture and reproduce, even for small orifice diameters of the order of 0.5 in or less, and it is believed that some success in attaining this aim was achieved. The first section of the paper contains a review of previous investigations classified into three main groups. In the second part of the paper, experiments with various types of orifice plate are described and it is shown that a properly proportioned single-bevelled orifice has as good a performance in the low Reynolds number range as that of any of the more complicated shapes.


2000 ◽  
Author(s):  
Ajit Pal Singh ◽  
S. H. Winoto ◽  
D. A. Shah ◽  
K. G. Lim ◽  
Robert E. K. Goh

Abstract Performance characteristics of some low Reynolds number airfoils for the use in micro air vehicles (MAVs) are computationally studied using XFOIL at a Reynolds number of 80,000. XFOIL, which is based on linear-vorticity stream function panel method coupled with a viscous integral formulation, is used for the analysis. In the first part of the study, results obtained from the XFOIL have been compared with available experimental data at low Reynolds numbers. XFOIL is then used to study relative aerodynamic performance of nine different airfoils. The computational analysis has shown that the S1223 airfoil has a relatively better performance than other airfoils considered for the analysis.


1999 ◽  
Vol 122 (2) ◽  
pp. 431-433 ◽  
Author(s):  
C. G. Murawski ◽  
K. Vafai

An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. Flow Reynolds numbers, based on exit velocity and suction length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number, resulted in shrinkage of the separation region on the suction surface. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. It is shown that width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. [S0098-2202(00)00202-9]


2016 ◽  
Vol 28 (3) ◽  
pp. 273-285
Author(s):  
Katsuya Hirata ◽  
◽  
Ryo Nozawa ◽  
Shogo Kondo ◽  
Kazuki Onishi ◽  
...  

[abstFig src='/00280003/02.jpg' width=""300"" text='Iso-Q surfaces of very-slow flow past an iNACA0015' ] The airfoil is often used as the elemental device for flying/swimming robots, determining its basic performances. However, most of the aerodynamic characteristics of the airfoil have been investigated at Reynolds numbers Re’s more than 106. On the other hand, our knowledge is not enough in low Reynolds-number ranges, in spite of the recent miniaturisation of robots. In the present study, referring to our previous findings (Hirata et al., 2011), we numerically examine three kinds of high-performance airfoils proposed for very-low Reynolds numbers; namely, an iNACA0015 (the NACA0015 placed back to front), an FPBi (a flat plate blended with iNACA0015 as its upper half) and an FPBN (a flat plate blended with the NACA0015 as its upper half), in comparison with such basic airfoils as a NACA0015 and an FP (a flat plate), at a Reynolds number Re = 1.0 × 102 using two- and three-dimensional computations. As a result, the FPBi shows the best performance among the five kinds of airfoils.


Author(s):  
Takayuki Matsunuma ◽  
Hiroyuki Abe ◽  
Yasukata Tsutsui

The aerodynamic characteristics of turbine cascades are thought to be relatively satisfactory due to the favorable pressure of the accelerating flow. But within the low Reynolds number region of 6×104 where the 300kW ceramic gas turbines which are being developed under the New Sunshine project of Japan operate, the characteristics such as boundary layer separation, reattachment and secondary flow which lead to prominent power losses can not be easily predicted. In this research, experiments have been conducted to evaluate the performance of an annular turbine stator cascade, especially focused on the influence of inlet turbulence intensity at low Reynolds numbers. The Reynolds number, based on inlet condition, was varied from 2×104 to 12×104. The turbulence intensity was changed between 0.5% and 8.9% by setting turbulence generation sheets. The wake of the cascade was measured using a 5-hole pressure probe and a single element hot-wire anemometry. The Reynolds number was a determinative important parameter, while the turbulence intensity was found to have an insignificant effect on the overall total pressure loss of annular turbine stator at low Reynolds numbers. However, the increase in separation zone on suction surface and the decrease of passage vortices near the endwalls were observed locally with the increase in the inlet turbulence intensity. Instantaneous velocity signals proved the transformation of the flow structure in separation zone. The increase in profile loss (separation) and the decrease in net secondary loss (passage vonices) offset each other. Therefore, the net overall loss remains almost constant.


1968 ◽  
Vol 183 (1) ◽  
pp. 591-602 ◽  
Author(s):  
G. S. Vasy ◽  
L. J. Kastner ◽  
J. C. McVeigh

The characteristics of the orifice meter are well known and have been thoroughly explored by a number of investigators over a considerable range of Reynolds numbers, yet the low Reynolds number range—i.e. below ( Re D = 4000, where ( Re) D is the upstream pipe Reynolds number, has received comparatively little attention, although recent work by two of the authors has supplemented the available data substantially. This work concentrates on very accurate measurements with small diameter orifices, but where less exacting standards of metering accuracy, e.g. ±2-2 1/2 per cent, can be allowed, a closer analysis reveals that there is a choice of orifice profiles which can be used successfully. Consideration is also given to the recommendations of the various standardizing bodies for the allowable tolerances in the diameter of the pipeline in which the orifice meter is situated. These tolerances are often unnecessarily severe and a ‘tolerance number’ depending upon discharge coefficient and the area ratio of orifice to pipe is suggested.


1971 ◽  
Vol 45 (1) ◽  
pp. 203-208 ◽  
Author(s):  
D. J. Tritton

A discussion is given of the current state of knowledge of vortex streets behind circular cylinders in the Reynolds number range 50 to 160. This was prompted by Gaster's (1969) report that he could not find the transition at a Reynolds number of about 90 observed by Tritton (1959) and Berger (1964a). A further brief experiment confirming the existence of the transition is described Reasons for rejecting Gaster's interpretation are advanced. Possible (mutually alternative) explanations of the discrepant observations are suggested.


Author(s):  
Ishfaq Fayaz ◽  
Syeeda Needa Fathima ◽  
Y.D. Dwivedi

The computational investigation of aerodynamic characteristics and flow fields of a smooth owl-like airfoil without serrations and velvet structures.The bioinspired airfoil design is planned to serve as the main-wing for low-reynolds number aircrafts such as (MAV)micro air vechiles.The dependency of reynolds number on aerodynamics could be obtained at low reynolds numbers.The result of this experiment shows the owl-like airfoil is having high lift performance at very low speeds and in various wind conditions.One of the unique feature of owl airfoil is a separation bubble on the pressure side at low angle of attack.The separation bubble changes location from the pressure side to suction side as the AOA (angle of attack) increases. The reynolds number dependancy on the lift curve is insignificant,although there’s difference in drag curve at high angle of attacks.Eventually, we get the geometric features of the owl like airfoil to increase aerodynamic performance at low reynolds numbers.


Author(s):  
Don W. Allen ◽  
Nicole Liu

Most deepwater tubulars experiencing high currents frequently require vortex-induced vibration (VIV) suppression to maintain an acceptable fatigue life. While helical strakes and fairings are by far the most popular VIV suppression devices used in the offshore industry today, a myriad of small alternations to these basic devices can significantly impact the observed levels of suppression effectiveness. Additionally, numerous novel VIV reduction devices are continually being developed and some new devices are progressing towards the product readiness phase. It is quite common to first test suppression devices at low Reynolds numbers due to the availability of smaller scale facilities that are typically more budget-friendly than larger scale facilities. For larger scale testing, it is usually simpler and less expensive to evaluate prototype suppression devices on shorter pipe sections that are spring mounted rather than test on longer flexible pipes. This paper utilizes results from historical VIV experiments to evaluate the merits of various test setups and scales and to underscore the importance of Reynolds number. An assortment of testing scales are presented including: a) small diameter tests at low Reynolds numbers; b) moderate diameter tests that incorporate at least part of the critical Reynolds number range; c) short pipe tests conducted at prototype Reynolds numbers; and d) long pipe tests conducted at high Reynolds numbers but at less than full scale suppression geometry. The use of computational fluid dynamics (CFD) is also briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document