scholarly journals Hydrodynamic scaling limit of continuum solid-on-solid model

2006 ◽  
Vol 2006 ◽  
pp. 1-37 ◽  
Author(s):  
Anamaria Savu

A fourth-order nonlinear evolution equation is derived from a microscopic model for surface diffusion, namely, the continuum solid-on-solid model. We use the method developed by Varadhan for the computation of the hydrodynamic scaling limit of nongradient models. What distinguishes our model from other models discussed so far is the presence of two conservation laws for the dynamics in a nonperiodic box and the complex dynamics that is not nearest-neighbor interaction. Along the way, a few steps have to be adapted to our new context. As a byproduct of our main result, we also derive the hydrodynamic scaling limit of a perturbation of the continuum solid-on-solid model, a model that incorporates both surface diffusion and surface electromigration.

The fourth-order nonlinear boundary-value problem for the evolution of a single symmetric grain-boundary groove by surface diffusion is modelled analytically. A solution is achieved by partitioning the surface into subintervals delimited by lines of constant slope. Within each subinterval, the advance of the surface is described by an integrable nonlinear evolution equation. The model is capable of incorporating the actual nonlinearity arbitrarily closely. The surface profile is determined for various values of the central groove slope including the limiting case of a groove which has a root that is vertical. Such a solution exists only because of the nonlinearity.


1999 ◽  
Vol 16 (6) ◽  
pp. 434-436
Author(s):  
Yun-zhong Lai ◽  
Ai-zhen Zhang ◽  
Zhan-ning Hu ◽  
Jiu-qing Liang ◽  
Fu-ke Pu (Pu Fu-cho)

1997 ◽  
Vol 492 ◽  
Author(s):  
Sukit Llmpijumnong ◽  
Walter R. L. Lambrecht

ABSTRACTThe energy differences between various SiC polytypes are calculated using the full-potential linear muffin-tin orbital method and analyzed in terms of the anisotropie next nearest neighbor interaction (ANNNI) model. The fact that J1 + 2J2 < 0 with J1 > 0 implies that twin boundaries in otherwise cubic material are favorable unless twins occur as nearest neighbor layers. Contrary to some other recent calculations we find J1 > |J2|. We discuss the consequences of this for stabilization of cubic SiC in epitaxial growth, including considerations of the island size effects.


Sign in / Sign up

Export Citation Format

Share Document