scholarly journals Analytic solution of Stokes second problem for second-grade fluid

2006 ◽  
Vol 2006 ◽  
pp. 1-8 ◽  
Author(s):  
S. Asghar ◽  
S. Nadeem ◽  
K. Hanif ◽  
T. Hayat

Using Laplace transformation and perturbation techniques, analytical solution is obtained for unsteady Stokes' second problem. Expressions for steady and transient solutions are explicitly determined. These solutions depend strongly upon the material parameter of second-grade fluid. It is shown that phase velocity decreases by increasing material parameter of second-grade fluid.

Author(s):  
Nadeem Abbas ◽  
M. Y. Malik ◽  
Sohail Nadeem ◽  
Shafiq Hussain ◽  
A. S. El-Shafa

Stagnation point flow of viscoelastic second grade fluid over a stretching cylinder under the thermal slip and magnetic hydrodynamics effects are studied. The mathematical model has been developed under the assumption of non-Newtonian viscoelastic fluid flow over a stretching cylinder by means of the boundary layer approximations. The developed model further reduced through the similarity transformations and constructs the model of nonlinear ordinary differential equations. The system of nonlinear differential equations is dimensionless and solved through the numerical technique bvp5c methods. The results of the physical parameters are found and interpreted in the form of tables and graphs. The velocity shows that the graph of curves enhances away from the surface when the values material parameter [Formula: see text] increase, which means the momentum boundary layer increases for enhancing the material parameter [Formula: see text]. The temperature gradient reduced due enhancing the values of material parameter [Formula: see text] because thermal boundary layer reduced for higher values of material parameter [Formula: see text].


AIP Advances ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 055313 ◽  
Author(s):  
Muhammad Rafiq ◽  
Muhammad Kamran ◽  
Naveed Ahmed ◽  
Syed Tauseef Mohyud-Din ◽  
Yasir Bashir ◽  
...  

2007 ◽  
Vol 74 (6) ◽  
pp. 1165-1171 ◽  
Author(s):  
T. Hayat ◽  
Z. Abbas ◽  
M. Sajid

In this study, we derive an analytical solution describing the magnetohydrodynamic boundary layer flow of a second grade fluid over a shrinking sheet. Both exact and series solutions have been determined. For the series solution, the governing nonlinear problem is solved using the homotopy analysis method. The convergence of the obtained solution is analyzed explicitly. Graphical results have been presented and discussed for the pertinent parameters.


2008 ◽  
Vol 75 (6) ◽  
Author(s):  
Ahmer Mehmood ◽  
Asif Ali

We present a purely analytic solution to the steady three-dimensional viscous stagnation point flow of second grade fluid over a heated flat plate moving with some constant speed. The analytic solution is obtained by a newly developed analytic technique, namely, homotopy analysis method. By giving a comparison with the existing results, it is shown that the obtained analytic solutions are highly accurate and are in good agreement with the results already present in literature. Also, the present analytic solution is uniformly valid for all values of the dimensionless second grade parameter α. The effects of α and the Prandtl number Pr on velocity and temperature profiles are discussed through graphs.


Sign in / Sign up

Export Citation Format

Share Document