scholarly journals Transplantation of Long-Term Cultured Sympathetic Neurons into the Brains of Parkinsonian Rats

1992 ◽  
Vol 3 (4) ◽  
pp. 213-214
Author(s):  
Naoyuki Nakao ◽  
Toru Itakura ◽  
Yuji Uematsu ◽  
Yoshitsgu Ooiwa ◽  
Norihiko Komai
1990 ◽  
Vol 110 (4) ◽  
pp. 1295-1306 ◽  
Author(s):  
A M Tolkovsky ◽  
A E Walker ◽  
R D Murrell ◽  
H S Suidan

A method for clamping cytosolic free Ca2+ ([Ca2+]i) in cultures of rat sympathetic neurons at or below resting levels for several days was devised to determine whether Ca2+ signals are required for neurite outgrowth from neurons that depend on Nerve Growth Factor (NGF) for their growth and survival. To control [Ca2+]i, normal Ca2+ influx was eliminated by titration of extracellular Ca2+ with EGTA and reinstated through voltage-sensitive Ca2+ channels. The rate of neurite outgrowth and the number of neurites thus became dependent on the extent of depolarization by KCl, and withdrawal of KCl caused an immediate cessation of growth. Neurite outgrowth was completely blocked by the L type Ca2+ channel antagonists nifedipine, nitrendipine, D600, or diltiazem at sub- or micromolar concentrations. Measurement of [Ca2+]i in cell bodies using the fluorescent Ca2+ indicator fura-2 established that optimal growth, similar to that seen in normal medium, was obtained when [Ca2+]i was clamped at resting levels. These levels of [Ca2+]i were set by serum, which elevated [Ca2+]i by integral of 30 nM, whereas the addition of NGF had no effect on [Ca2+]i. The reduction of [Ca2+]o prevented neurite fasciculation but this had no effect on the rate of neurite elongation or on the number of extending neurites. These results show that neurite outgrowth from NGF-dependent neurons occurs over long periods in the complete absence of Ca2+ signals, suggesting that Ca2+ signals are not necessary for operating the basic machinery of neurite outgrowth.


Author(s):  
E. B. Masurovsky ◽  
H. H. Benitez ◽  
M. R. Murray

Recent light- and electron microscope studies concerned with the effects of D2O on the development of chick sympathetic ganglia in long-term, organized culture revealed the presence of rod-like fibrillar formations, and associated granulofibrillar bodies, in the nuclei of control and deuterated neurons. Similar fibrillar formations have been reported in the nuclei of certain mammalian CNS neurons; however, related granulofibrillar bodies have not been previously described. Both kinds of intranuclear structures are observed in cultures fixed either in veronal acetate-buffered 2%OsO4 (pH 7. 4), or in 3.5% glutaraldehyde followed by post-osmication. Thin sections from such Epon-embedded cultures were stained with ethanolic uranyl acetate and basic lead citrate for viewing in the electron microscope.


1991 ◽  
Vol 115 (2) ◽  
pp. 461-471 ◽  
Author(s):  
A Batistatou ◽  
L A Greene

Past studies have shown that serum-free cultures of PC12 cells are a useful model system for studying the neuronal cell death which occurs after neurotrophic factor deprivation. In this experimental paradigm, nerve growth factor (NGF) rescues the cells from death. It is reported here that serum-deprived PC12 cells manifest an endonuclease activity that leads to internucleosomal cleavage of their cellular DNA. This activity is detected within 3 h of serum withdrawal and several hours before any morphological sign of cell degeneration or death. NGF and serum, which promote survival of the cells, inhibit the DNA fragmentation. Aurintricarboxylic acid (ATA), a general inhibitor of nucleases in vitro, suppresses the endonuclease activity and promotes long-term survival of PC12 cells in serum-free cultures. This effect appears to be independent of macromolecular synthesis. In addition, ATA promotes long-term survival of cultured sympathetic neurons after NGF withdrawal. ATA neither promotes nor maintains neurite outgrowth. It is hypothesized that the activation of an endogenous endonuclease could be responsible for neuronal cell death after neurotrophic factor deprivation and that growth factors could promote survival by leading to inhibition of constitutively present endonucleases.


2006 ◽  
Vol 51 (3) ◽  
pp. 397-413 ◽  
Author(s):  
Patricia C. Brum ◽  
Carl M. Hurt ◽  
Olga G. Shcherbakova ◽  
Brian Kobilka ◽  
Timothy Angelotti

1994 ◽  
Vol 107 (1) ◽  
pp. 135-143 ◽  
Author(s):  
P.W. Baas ◽  
T.P. Pienkowski ◽  
K.A. Cimbalnik ◽  
K. Toyama ◽  
S. Bakalis ◽  
...  

We previously defined two classes of microtubule polymer in the axons of cultured sympathetic neurons that differ in their sensitivity to nocodazole by roughly 35-fold (Baas and Black (1990) J. Cell Biol. 111, 495–509). Here we demonstrate that virtually all of the microtubule polymer in these axons, including the drug-labile polymer, is stable to cold. What factors account for the unique stability properties of axonal microtubules? In the present study, we have focused on the role of tau, a microtubule-associated protein that is highly enriched in the axon, in determining the stability of microtubules to nocodazole and/or cold in living cells. We used a baculovirus vector to express very high levels of tau in insect ovarian Sf9 cells. The cells respond by extending processes that contain dense bundles of microtubules (Knops et al. (1991) J. Cell Biol. 114, 725–734). Cells induced to express tau were treated with either cold or 2 micrograms/ml nocodazole for times ranging from 5 minutes to 6 hours. The results with each treatment were very different from one another. Virtually all of the polymer was depolymerized within the first 30 minutes in cold, while little or no microtubule depolymerization was detected even after 6 hours in nocodazole. Based on these results, we conclude that tau is almost certainly a factor in conferring drug stability to axonal microtubules, but that factors other than or in addition to tau are required to confer cold stability.


1998 ◽  
Vol 18 (21) ◽  
pp. 8660-8673 ◽  
Author(s):  
Irina Tint ◽  
Theresa Slaughter ◽  
Itzhak Fischer ◽  
Mark M. Black

Sign in / Sign up

Export Citation Format

Share Document