scholarly journals Aurintricarboxylic acid rescues PC12 cells and sympathetic neurons from cell death caused by nerve growth factor deprivation: correlation with suppression of endonuclease activity.

1991 ◽  
Vol 115 (2) ◽  
pp. 461-471 ◽  
Author(s):  
A Batistatou ◽  
L A Greene

Past studies have shown that serum-free cultures of PC12 cells are a useful model system for studying the neuronal cell death which occurs after neurotrophic factor deprivation. In this experimental paradigm, nerve growth factor (NGF) rescues the cells from death. It is reported here that serum-deprived PC12 cells manifest an endonuclease activity that leads to internucleosomal cleavage of their cellular DNA. This activity is detected within 3 h of serum withdrawal and several hours before any morphological sign of cell degeneration or death. NGF and serum, which promote survival of the cells, inhibit the DNA fragmentation. Aurintricarboxylic acid (ATA), a general inhibitor of nucleases in vitro, suppresses the endonuclease activity and promotes long-term survival of PC12 cells in serum-free cultures. This effect appears to be independent of macromolecular synthesis. In addition, ATA promotes long-term survival of cultured sympathetic neurons after NGF withdrawal. ATA neither promotes nor maintains neurite outgrowth. It is hypothesized that the activation of an endogenous endonuclease could be responsible for neuronal cell death after neurotrophic factor deprivation and that growth factors could promote survival by leading to inhibition of constitutively present endonucleases.

Development ◽  
1997 ◽  
Vol 124 (6) ◽  
pp. 1239-1249 ◽  
Author(s):  
K. Vekrellis ◽  
M.J. McCarthy ◽  
A. Watson ◽  
J. Whitfield ◽  
L.L. Rubin ◽  
...  

The Bcl-2 and Bcl-x proteins suppress programmed cell death, whereas Bax promotes apoptosis. We investigated the pattern of expression of Bcl-2, Bax and Bcl-x during neuronal differentiation and development. All three proteins were widely expressed in neonatal rats but, in the adult, Bax levels were 20- to 140-fold lower in the cerebral cortex, cerebellum and heart muscle, whereas Bcl-x was not downregulated in any of the tissues examined. In the cerebral cortex and cerebellum, the decrease in Bax levels occurred after the period of developmental cell death. Further, microinjection of a Bax expression vector into cultured sympathetic neurons, which depend on nerve growth factor for survival, induced apoptosis in the presence of survival factor and increased the rate of cell death after nerve growth factor withdrawal. This effect could be blocked by co-injection of an expression vector for Bcl-xL or for the baculovirus p35 protein, an inhibitor of caspases (ICE-like proteases). These results suggest that, during development, the sensitivity of neurons to signals that induce apoptosis may be regulated by modulating Bax levels and that Bax-induced death requires caspase activity.


2019 ◽  
Vol 9 (8) ◽  
pp. 204 ◽  
Author(s):  
Marina Sycheva ◽  
Jake Sustarich ◽  
Yuxian Zhang ◽  
Vaithinathan Selvaraju ◽  
Thangiah Geetha ◽  
...  

We have previously shown that the expression of pro-nerve growth factor (proNGF) was significantly increased, nerve growth factor (NGF) level was decreased, and the expression of p75NTR was enhanced in Alzheimer’s disease (AD) hippocampal samples. NGF regulates cell survival and differentiation by binding TrkA and p75NTR receptors. ProNGF is the precursor form of NGF, binds to p75NTR, and induces cell apoptosis. The objective of this study is to determine whether the increased p75NTR expression in AD is due to the accumulation of proNGF and Rho kinase activation. PC12 cells were stimulated with either proNGF or NGF. Pull-down assay was carried out to determine the RhoA kinase activity. We found the expression of p75NTR was enhanced by proNGF compared to NGF. The proNGF stimulation also increased the RhoA kinase activity leading to apoptosis. The expression of active RhoA kinase was found to be increased in human AD hippocampus compared to control. The addition of RhoA kinase inhibitor Y27632 not only blocked the RhoA kinase activity but also reduced the expression of p75NTR receptor and inhibited the activation of JNK and MAPK induced by proNGF. This suggests that overexpression of proNGF in AD enhances p75NTR expression and activation of RhoA, leading to neuronal cell death.


1992 ◽  
Vol 119 (6) ◽  
pp. 1669-1680 ◽  
Author(s):  
P W Mesner ◽  
T R Winters ◽  
S H Green

Previous studies have shown that in neuronal cells the developmental phenomenon of programmed cell death is an active process, requiring synthesis of both RNA and protein. This presumably reflects a requirement for novel gene products to effect cell death. It is shown here that the death of nerve growth factor-deprived neuronal PC12 cells occurs at the same rate as that of rat sympathetic neurons and, like rat sympathetic neurons, involves new transcription and translation. In nerve growth factor-deprived neuronal PC12 cells, a decline in metabolic activity, assessed by uptake of [3H]2-deoxyglucose, precedes the decline in cell number, assessed by counts of trypan blue-excluding cells. Both declines are prevented by actinomycin D and anisomycin. In contrast, the death of nonneuronal (chromaffin-like) PC12 cells is not inhibited by transcription or translation inhibitors and thus does not require new protein synthesis. DNA fragmentation by internucleosomal cleavage does not appear to be a consistent or significant aspect of cell death in sympathetic neurons, neuronal PC12 cells, or nonneuronal PC12 cells, notwithstanding that the putative nuclease inhibitor aurintricarboxylic acid protects sympathetic neurons, as well as neuronal and nonneuronal PC12 cells, from death induced by trophic factor removal. Both phenotypic classes of PC12 cells respond to aurintricarboxylic acid with similar dose-response characteristics. Our results indicate that programmed cell death in neuronal PC12 cells, but not in nonneuronal PC12 cells, resembles programmed cell death in sympathetic neurons in significant mechanistic aspects: time course, role of new protein synthesis, and lack of a significant degree of DNA fragmentation.


1993 ◽  
Vol 122 (3) ◽  
pp. 523-532 ◽  
Author(s):  
A Batistatou ◽  
LA Greene

Serum-free PC12 cell cultures have been used to study the mechanisms of neuronal death after neurotrophic factor deprivation. We previously reported that PC12 cells undergo "apoptotic" internucleosomal DNA cleavage after withdrawal of trophic support. Here, we have used a sensitive method to detect PC12 cell DNA fragmentation within three hrs of serum removal and have exploited this assay to examine several aspects regarding the mechanisms of neuronal survival/death. Major advantages of this assay are that it permits acute experiments to be performed well before other manifest signs of cell death and under conditions that cannot be applied chronically. We find that this apopotic DNA fragmentation is distinct from the random DNA degradation that occurs during necrotic death. Major observations include the following: (a) There is a good correlation between the ability of trophic substances to promote PC12 cell survival and to inhibit early DNA fragmentation. (b) Phorbol ester, an activator of PKC, acutely suppresses DNA fragmentation, but does not promote long-term survival or inhibition of endonuclease activity when applied chronically due to its downregulation of PKC. (c) Cells undergoing apoptosis within 3 h of serum withdrawal have a "commitment point" of only 1.0-1.5 h beyond which they can no longer be rescued by NGF. (d) Aurin, a non-carboxylic analog of the endonuclease inhibitor ATA, also inhibits DNA fragmentation and promotes short-term survival of PC12 cells. (e) Macromolecular synthesis is not required for DNA fragmentation or for NGF to prevent this event. (f) Extracellular Ca2+ is not required for internucleosomal DNA cleavage caused by serum withdrawal or for suppression of this by NGF. (g) DNA fragmentation can also be detected in cultures of rat sympathetic neurons as early as 10 h after removal of NGF. As in PC12 cell cultures, this precedes morphological signs of cell death.


Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 867 ◽  
Author(s):  
Hyun Park ◽  
Jong Kang ◽  
Myung Lee

1-O-Hexyl-2,3,5-trimethylhydroquinone (HTHQ) has previously been found to have effective anti-oxidant and anti-lipid-peroxidative activity. We aimed to elucidate whether HTHQ can prevent dopaminergic neuronal cell death by investigating the effect on l-DOPA-induced cytotoxicity in PC12 cells. HTHQ protected from both l-DOPA-induced cell death and superoxide dismutase activity reduction. When assessing the effect of HTHQ on oxidative stress-related signaling pathways, HTHQ inhibited l-DOPA-induced phosphorylation of sustained extracellular signal-regulated kinases (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK1/2). HTHQ also normalized l-DOPA-reduced Bcl-2-associated death protein (Bad) phosphorylation and Bcl-2-associated X protein (Bax) expression, promoting cell survival. Taken together, HTHQ exhibits protective effects against l-DOPA-induced cell death through modulation of the ERK1/2-p38MAPK-JNK1/2-Bad-Bax signaling pathway in PC12 cells. These results suggest that HTHQ may show ameliorative effects against oxidative stress-induced dopaminergic neuronal cell death, although further studies in animal models of Parkinson’s disease are required to confirm this.


1995 ◽  
Vol 128 (1) ◽  
pp. 201-208 ◽  
Author(s):  
I Martinou ◽  
P A Fernandez ◽  
M Missotten ◽  
E White ◽  
B Allet ◽  
...  

To study molecular mechanisms underlying neuronal cell death, we have used sympathetic neurons from superior cervical ganglia which undergo programmed cell death when deprived of nerve growth factor. These neurons have been microinjected with expression vectors containing cDNAs encoding selected proteins to test their regulatory influence over cell death. Using this procedure, we have shown previously that sympathetic neurons can be protected from NGF deprivation by the protooncogene Bcl-2. We now report that the E1B19K protein from adenovirus and the p35 protein from baculovirus also rescue neurons. Other adenoviral proteins, E1A and E1B55K, have no effect on neuronal survival. E1B55K, known to block apoptosis mediated by p53 in proliferative cells, failed to rescue sympathetic neurons suggesting that p53 is not involved in neuronal death induced by NGF deprivation. E1B19K and p35 were also coinjected with Bcl-Xs which blocks Bcl-2 function in lymphoid cells. Although Bcl-Xs blocked the ability of Bcl-2 to rescue neurons, it had no effect on survival that was dependent upon expression of E1B19K or p35.


2020 ◽  
Vol 117 (52) ◽  
pp. 33597-33607
Author(s):  
Amit K. Patel ◽  
Risa M. Broyer ◽  
Cassidy D. Lee ◽  
Tianlun Lu ◽  
Mikaela J. Louie ◽  
...  

Axon injury is a hallmark of many neurodegenerative diseases, often resulting in neuronal cell death and functional impairment. Dual leucine zipper kinase (DLK) has emerged as a key mediator of this process. However, while DLK inhibition is robustly protective in a wide range of neurodegenerative disease models, it also inhibits axonal regeneration. Indeed, there are no genetic perturbations that are known to both improve long-term survival and promote regeneration. To identify such a neuroprotective target, we conducted a set of complementary high-throughput screens using a protein kinase inhibitor library in human stem cell-derived retinal ganglion cells (hRGCs). Overlapping compounds that promoted both neuroprotection and neurite outgrowth were bioinformatically deconvoluted to identify specific kinases that regulated neuronal death and axon regeneration. This work identified the role of germinal cell kinase four (GCK-IV) kinases in cell death and additionally revealed their unexpected activity in suppressing axon regeneration. Using an adeno-associated virus (AAV) approach, coupled with genome editing, we validated that GCK-IV kinase knockout improves neuronal survival, comparable to that of DLK knockout, while simultaneously promoting axon regeneration. Finally, we also found that GCK-IV kinase inhibition also prevented the attrition of RGCs in developing retinal organoid cultures without compromising axon outgrowth, addressing a major issue in the field of stem cell-derived retinas. Together, these results demonstrate a role for the GCK-IV kinases in dissociating the cell death and axonal outgrowth in neurons and their druggability provides for therapeutic options for neurodegenerative diseases.


2020 ◽  
Vol 21 (6) ◽  
pp. 2138 ◽  
Author(s):  
Ines Amara ◽  
Maria Scuto ◽  
Agata Zappalà ◽  
Maria Laura Ontario ◽  
Antonio Petralia ◽  
...  

Hericium Erinaceus (HE) is a medicinal plant known to possess anticarcinogenic, antibiotic, and antioxidant activities. It has been shown to have a protective effect against ischemia-injury-induced neuronal cell death in rats. As an extending study, here we examined in pheochromocytoma 12 (PC12) cells, whether HE could exert a protective effect against oxidative stress and apoptosis induced by di(2-ethylhexyl)phthalate (DEHP), a plasticizer known to cause neurotoxicity. We demonstrated that pretreatment with HE significantly attenuated DEHP induced cell death. This protective effect may be attributed to its ability to reduce intracellular reactive oxygen species levels, preserving the activity of respiratory complexes and stabilizing the mitochondrial membrane potential. Additionally, HE pretreatment significantly modulated Nrf2 and Nrf2-dependent vitagenes expression, preventing the increase of pro-apoptotic and the decrease of anti-apoptotic markers. Collectively, our data provide evidence of new preventive nutritional strategy using HE against DEHP-induced apoptosis in PC12 cells.


Sign in / Sign up

Export Citation Format

Share Document