scholarly journals One-sided Lebesgue Bernoulli maps of the sphere of degreen2and2n2

2000 ◽  
Vol 23 (6) ◽  
pp. 383-392 ◽  
Author(s):  
Julia A. Barnes ◽  
Lorelei Koss

We prove that there are families of rational maps of the sphere of degreen2(n=2,3,4,…)and2n2(n=1,2,3,…)which, with respect to a finite invariant measure equivalent to the surface area measure, are isomorphic to one-sided Bernoulli shifts of maximal entropy. The maps in question were constructed by Böettcher (1903--1904) and independently by Lattès (1919). They were the first examples of maps with Julia set equal to the whole sphere.

2002 ◽  
Vol 85 (2) ◽  
pp. 467-492 ◽  
Author(s):  
TIM BEDFORD ◽  
ALBERT M. FISHER ◽  
MARIUSZ URBAŃSKI

We define the scenery flow space at a point z in the Julia set J of a hyperbolic rational map $T : \mathbb{C} \to \mathbb{C}$ with degree at least 2, and more generally for T a conformal mixing repellor.We prove that, for hyperbolic rational maps, except for a few exceptional cases listed below, the scenery flow is ergodic. We also prove ergodicity for almost all conformal mixing repellors; here the statement is that the scenery flow is ergodic for the repellors which are not linear nor contained in a finite union of real-analytic curves, and furthermore that for the collection of such maps based on a fixed open set U, the ergodic cases form a dense open subset of that collection. Scenery flow ergodicity implies that one generates the same scenery flow by zooming down towards almost every z with respect to the Hausdorff measure $H^d$, where d is the dimension of J, and that the flow has a unique measure of maximal entropy.For all conformal mixing repellors, the flow is loosely Bernoulli and has topological entropy at most d. Moreover the flow at almost every point is the same up to a rotation, and so as a corollary, one has an analogue of the Lebesgue density theorem for the fractal set, giving a different proof of a theorem of Falconer.2000 Mathematical Subject Classification: 37F15, 37F35, 37D20.


2009 ◽  
Vol 46 (4) ◽  
pp. 493-514
Author(s):  
Gennadiy Averkov ◽  
Endre Makai ◽  
Horst Martini

K. Zindler [47] and P. C. Hammer and T. J. Smith [19] showed the following: Let K be a convex body in the Euclidean plane such that any two boundary points p and q of K , that divide the circumference of K into two arcs of equal length, are antipodal. Then K is centrally symmetric. [19] announced the analogous result for any Minkowski plane \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{M}^2$$ \end{document}, with arc length measured in the respective Minkowski metric. This was recently proved by Y. D. Chai — Y. I. Kim [7] and G. Averkov [4]. On the other hand, for Euclidean d -space ℝ d , R. Schneider [38] proved that if K ⊂ ℝ d is a convex body, such that each shadow boundary of K with respect to parallel illumination halves the Euclidean surface area of K (for the definition of “halving” see in the paper), then K is centrally symmetric. (This implies the result from [19] for ℝ 2 .) We give a common generalization of the results of Schneider [38] and Averkov [4]. Namely, let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{M}^d$$ \end{document} be a d -dimensional Minkowski space, and K ⊂ \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{M}^d$$ \end{document} be a convex body. If some Minkowskian surface area (e.g., Busemann’s or Holmes-Thompson’s) of K is halved by each shadow boundary of K with respect to parallel illumination, then K is centrally symmetric. Actually, we use little from the definition of Minkowskian surface area(s). We may measure “surface area” via any even Borel function ϕ: Sd −1 → ℝ, for a convex body K with Euclidean surface area measure dSK ( u ), with ϕ( u ) being dSK ( u )-almost everywhere non-0, by the formula B ↦ ∫ B ϕ( u ) dSK ( u ) (supposing that ϕ is integrable with respect to dSK ( u )), for B ⊂ Sd −1 a Borel set, rather than the Euclidean surface area measure B ↦ ∫ BdSK ( u ). The conclusion remains the same, even if we suppose surface area halving only for parallel illumination from almost all directions. Moreover, replacing the surface are a measure dSK ( u ) by the k -th area measure of K ( k with 1 ≦ k ≦ d − 2 an integer), the analogous result holds. We follow rather closely the proof for ℝ d , which is due to Schneider [38].


1996 ◽  
Vol 28 (2) ◽  
pp. 332-333
Author(s):  
Paul Goodey ◽  
Markus Kiderlen ◽  
Wolfgang Well

For a stationary particle process X with convex particles in ℝdd ≧ 2, a mean body M(X) can be defined by where h(M,·) denotes the support function of the convex body M, γ the intensity of X, and P0 is the distribution of the typical particle of X (a probability measure on the set of convex bodies with Steiner point at the origin). Replacing the support function h(M,·) by the surface area measure S(M,·) (see Schneider (1993), for the basic notions from convex geometry), we get the Blaschke body B(X) of X, After normalization, the left-hand side represents the mean normal distribution of X. The main problem discussed here is whether B(X) (respectively S(B(X), ·)) is uniquely determined by the mean bodies M(X ∩ E) in random planar sections X ∩ E of X. From more general results in Weil (1995), it follows that the expectation ES(M(X ∩ E), ·) (taken w.r.t. the uniform distribution of two-dimensional subspaces E in ℝd) equals the surface area measure of a section mean B2(B(X)) of B(X). Thus, the formulated stereological question can be reduced to the injectivity of the transform B2 : K ↦ B2(K).


Author(s):  
Christoph Haberl ◽  
Lukas Parapatits

Abstract.We consider valuations defined on polytopes containing the origin which have measures on the sphere as values. We show that the classical surface area measure is essentially the only such valuation which is


1986 ◽  
Vol 6 (3) ◽  
pp. 393-399 ◽  
Author(s):  
Artur Oscar Lopes

AbstractFor a polynomial map the measure of maximal entropy is the equilibrium measure for the logarithm potential in the Julia set [1], [4].Here we will show that in the case where f is a rational map such that f(∞) = ∞ and the Julia set is bounded, then the two measures mentioned above are equal if and only if f is a polynomial.


1989 ◽  
Vol 111 (4) ◽  
pp. 633 ◽  
Author(s):  
Jong-Guk Bak ◽  
David McMichael ◽  
James Vance ◽  
Stephen Wainger

2016 ◽  
Vol 37 (6) ◽  
pp. 1997-2016 ◽  
Author(s):  
YINGQING XIAO ◽  
FEI YANG

In this paper, we study the dynamics of the family of rational maps with two parameters $$\begin{eqnarray}f_{a,b}(z)=z^{n}+\frac{a^{2}}{z^{n}-b}+\frac{a^{2}}{b},\end{eqnarray}$$ where $n\geq 2$ and $a,b\in \mathbb{C}^{\ast }$. We give a characterization of the topological properties of the Julia set and the Fatou set of $f_{a,b}$ according to the dynamical behavior of the orbits of the free critical points.


1971 ◽  
Vol 14 (2) ◽  
pp. 197-206 ◽  
Author(s):  
Usha Sachdevao

Let Σ be a left amenable semigroup, and let {Tσ: σ ∊ Σ} be a representation of Σ as a semigroup of positive linear contraction operators on L1(X, 𝓐, p). This paper is devoted to the study of existence of a finite equivalent invariant measure for such semigroups of operators.


Sign in / Sign up

Export Citation Format

Share Document