shadow boundary
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 4)

H-INDEX

12
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Shulabh Gupta ◽  
Tom J. Smy ◽  
Scott Stewart

A ray optical methodology based on the uniform theory of diffraction is proposed to model electromagnetic field scattering from curved metasurfaces. The problem addressed is the illumination of a purely reflective uniform cylindrical metasurface by a line source, models the surface with susceptibilities and employs a methodology previously used for cylinders coated in thin dielectric layers [1]. The approach is fundamentally based on a representation of the metasurface using the General Sheet Transition Conditions (GSTCs) which characterizes the surface in terms of susceptibility dyadics. An eigenfunction description of the metasurface problem is derived considering both tangential and normal surface susceptibilities, and used to develop a ray optics (RO) description of the scattered fields; including the specular geometrical optical field, surface diffraction described by creeping waves and a transition region over the shadow boundary. The specification of the fields in the transition region is dependent on the evaluation of the Pekeris caret function integral and the method follows [1]. The proposed RO-GSTC model is then successfully demonstrated for a variety of cases and is independently verified using a rigorous eigenfunction solution (EF-GSTC) and full-wave Integral Equation method (IE-GSTC), over the entire domain from the deep lit to deep shadow.


2022 ◽  
Author(s):  
Shulabh Gupta ◽  
Tom J. Smy ◽  
Scott Stewart

A ray optical methodology based on the uniform theory of diffraction is proposed to model electromagnetic field scattering from curved metasurfaces. The problem addressed is the illumination of a purely reflective uniform cylindrical metasurface by a line source, models the surface with susceptibilities and employs a methodology previously used for cylinders coated in thin dielectric layers [1]. The approach is fundamentally based on a representation of the metasurface using the General Sheet Transition Conditions (GSTCs) which characterizes the surface in terms of susceptibility dyadics. An eigenfunction description of the metasurface problem is derived considering both tangential and normal surface susceptibilities, and used to develop a ray optics (RO) description of the scattered fields; including the specular geometrical optical field, surface diffraction described by creeping waves and a transition region over the shadow boundary. The specification of the fields in the transition region is dependent on the evaluation of the Pekeris caret function integral and the method follows [1]. The proposed RO-GSTC model is then successfully demonstrated for a variety of cases and is independently verified using a rigorous eigenfunction solution (EF-GSTC) and full-wave Integral Equation method (IE-GSTC), over the entire domain from the deep lit to deep shadow.


2020 ◽  
Vol 10 (19) ◽  
pp. 6761
Author(s):  
Ziyi Ju ◽  
Li Gun ◽  
Amir Hussain ◽  
Mufti Mahmud ◽  
Cosimo Ieracitano

In this paper, a Brain-Machine Interface (BMI) system is proposed to automatically control the navigation of wheelchairs by detecting the shadows on their route. In this context, a new algorithm to detect shadows in a single image is proposed. Specifically, a novel adaptive direction tracking filter (ADT) is developed to extract feature information along the direction of shadow boundaries. The proposed algorithm avoids extraction of features around all directions of pixels, which significantly improves the efficiency and accuracy of shadow features extraction. Higher-order statistics (HOS) features such as skewness and kurtosis in addition to other optical features are used as input to different Machine Learning (ML) based classifiers, specifically, a Multilayer Perceptron (MLP), Autoencoder (AE), 1D-Convolutional Neural Network (1D-CNN) and Support Vector Machine (SVM), to perform the shadow boundaries detection task. Comparative results demonstrate that the proposed MLP-based system outperforms all the other state-of-the-art approaches, reporting accuracy rates up to 84.63%.


2020 ◽  
Vol 12 (4) ◽  
pp. 679
Author(s):  
Guoqing Zhou ◽  
Hongjun Sha

Although many efforts have been made on building shadow detection from aerial images, little research on simultaneous shadows detection on both building roofs and grounds has been presented. Hence, this paper proposes a new method for simultaneous shadow detection on ghost image. In the proposed method, a corner point on shadow boundary is selected and its 3D approximate coordinate is calculated through photogrammetric collinear equation on the basis of assumption of average elevation within the aerial image. The 3D coordinates of the shadow corner point on shadow boundary is used to calculate the solar zenith angle and the solar altitude angle. The shadow areas on the ground, at the moment of aerial photograph shooting are determined by the solar zenith angle and the solar altitude angle with the prior information of the digital building model (DBM). Using the relationship between the shadows of each building and the height difference of buildings, whether there exists a shadow on the building roof is determined, and the shadow area on the building roof on the ghost image is detected on the basis of the DBM. High-resolution aerial images located in the City of Denver, Colorado, USA are used to verify the proposed method. The experimental results demonstrate that the shadows of the 120 buildings in the study area are completely detected, and the success rate is 15% higher than the traditional shadow detection method based on shadow features. Especially, when the shadows occur on the ground and on the buildings roofs, the successful rate of shadow detection can be improved by 9.42% and 33.33% respectively.


2018 ◽  
Vol 8 (11) ◽  
pp. 2255 ◽  
Author(s):  
Sangyoon Lee ◽  
Hyunki Hong

Environmental illumination information is necessary to achieve a consistent integration of virtual objects in a given image. In this paper, we present a gradient-based shadow detection method for estimating the environmental illumination distribution of a given scene, in which a three-dimensional (3-D) augmented reality (AR) marker, a cubic reference object of a known size, is employed. The geometric elements (the corners and sides) of the AR marker constitute the candidate’s shadow boundary; they are obtained on a flat surface according to the relationship between the camera and the candidate’s light sources. We can then extract the shadow regions by collecting the local features that support the candidate’s shadow boundary in the image. To further verify the shadows passed by the local features-based matching, we examine whether significant brightness changes occurred in the intersection region between the shadows. Our proposed method can reduce the unwanted effects caused by the threshold values during edge-based shadow detection, as well as those caused by the sampling position during point-based illumination estimation.


2015 ◽  
Vol 26 (5) ◽  
pp. 773-793 ◽  
Author(s):  
D. P. HEWETT

The hybrid numerical-asymptotic (HNA) approach aims to reduce the computational cost of conventional numerical methods for high-frequency wave scattering problems by enriching the numerical approximation space with oscillatory basis functions, chosen based on partial knowledge of the high-frequency solution asymptotics. In this paper, we propose a new methodology for the treatment of shadow boundary effects in HNA boundary element methods, using the classical geometrical theory of diffraction phase functions combined with mesh refinement. We develop our methodology in the context of scattering by a class of sound-soft non-convex polygons, presenting a rigorous numerical analysis (supported by numerical results) which proves the effectiveness of our HNA approximation space at high frequencies. Our analysis is based on a study of certain approximation properties of the Fresnel integral and related functions, which govern the shadow boundary behaviour.


2013 ◽  
Vol 32 (2pt2) ◽  
pp. 175-184 ◽  
Author(s):  
O. Mattausch ◽  
T. Igarashi ◽  
M. Wimmer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document