scholarly journals Characterizations of central symmetry for convex bodies in Minkowski spaces

2009 ◽  
Vol 46 (4) ◽  
pp. 493-514
Author(s):  
Gennadiy Averkov ◽  
Endre Makai ◽  
Horst Martini

K. Zindler [47] and P. C. Hammer and T. J. Smith [19] showed the following: Let K be a convex body in the Euclidean plane such that any two boundary points p and q of K , that divide the circumference of K into two arcs of equal length, are antipodal. Then K is centrally symmetric. [19] announced the analogous result for any Minkowski plane \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{M}^2$$ \end{document}, with arc length measured in the respective Minkowski metric. This was recently proved by Y. D. Chai — Y. I. Kim [7] and G. Averkov [4]. On the other hand, for Euclidean d -space ℝ d , R. Schneider [38] proved that if K ⊂ ℝ d is a convex body, such that each shadow boundary of K with respect to parallel illumination halves the Euclidean surface area of K (for the definition of “halving” see in the paper), then K is centrally symmetric. (This implies the result from [19] for ℝ 2 .) We give a common generalization of the results of Schneider [38] and Averkov [4]. Namely, let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{M}^d$$ \end{document} be a d -dimensional Minkowski space, and K ⊂ \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{M}^d$$ \end{document} be a convex body. If some Minkowskian surface area (e.g., Busemann’s or Holmes-Thompson’s) of K is halved by each shadow boundary of K with respect to parallel illumination, then K is centrally symmetric. Actually, we use little from the definition of Minkowskian surface area(s). We may measure “surface area” via any even Borel function ϕ: Sd −1 → ℝ, for a convex body K with Euclidean surface area measure dSK ( u ), with ϕ( u ) being dSK ( u )-almost everywhere non-0, by the formula B ↦ ∫ B ϕ( u ) dSK ( u ) (supposing that ϕ is integrable with respect to dSK ( u )), for B ⊂ Sd −1 a Borel set, rather than the Euclidean surface area measure B ↦ ∫ BdSK ( u ). The conclusion remains the same, even if we suppose surface area halving only for parallel illumination from almost all directions. Moreover, replacing the surface are a measure dSK ( u ) by the k -th area measure of K ( k with 1 ≦ k ≦ d − 2 an integer), the analogous result holds. We follow rather closely the proof for ℝ d , which is due to Schneider [38].

1996 ◽  
Vol 28 (2) ◽  
pp. 332-333
Author(s):  
Paul Goodey ◽  
Markus Kiderlen ◽  
Wolfgang Well

For a stationary particle process X with convex particles in ℝdd ≧ 2, a mean body M(X) can be defined by where h(M,·) denotes the support function of the convex body M, γ the intensity of X, and P0 is the distribution of the typical particle of X (a probability measure on the set of convex bodies with Steiner point at the origin). Replacing the support function h(M,·) by the surface area measure S(M,·) (see Schneider (1993), for the basic notions from convex geometry), we get the Blaschke body B(X) of X, After normalization, the left-hand side represents the mean normal distribution of X. The main problem discussed here is whether B(X) (respectively S(B(X), ·)) is uniquely determined by the mean bodies M(X ∩ E) in random planar sections X ∩ E of X. From more general results in Weil (1995), it follows that the expectation ES(M(X ∩ E), ·) (taken w.r.t. the uniform distribution of two-dimensional subspaces E in ℝd) equals the surface area measure of a section mean B2(B(X)) of B(X). Thus, the formulated stereological question can be reduced to the injectivity of the transform B2 : K ↦ B2(K).


Author(s):  
Christoph Haberl ◽  
Lukas Parapatits

Abstract.We consider valuations defined on polytopes containing the origin which have measures on the sphere as values. We show that the classical surface area measure is essentially the only such valuation which is


2021 ◽  
Vol 32 (1) ◽  
Author(s):  
Christian Richter ◽  
Eugenia Saorín Gómez

AbstractThe isoperimetric quotient of the whole family of inner and outer parallel bodies of a convex body is shown to be decreasing in the parameter of definition of parallel bodies, along with a characterization of those convex bodies for which that quotient happens to be constant on some interval within its domain. This is obtained relative to arbitrary gauge bodies, having the classical Euclidean setting as a particular case. Similar results are established for different families of Wulff shapes that are closely related to parallel bodies. These give rise to solutions of isoperimetric-type problems. Furthermore, new results on the monotonicity of quotients of other quermassintegrals different from surface area and volume, for the family of parallel bodies, are obtained.


1989 ◽  
Vol 111 (4) ◽  
pp. 633 ◽  
Author(s):  
Jong-Guk Bak ◽  
David McMichael ◽  
James Vance ◽  
Stephen Wainger

2000 ◽  
Vol 23 (6) ◽  
pp. 383-392 ◽  
Author(s):  
Julia A. Barnes ◽  
Lorelei Koss

We prove that there are families of rational maps of the sphere of degreen2(n=2,3,4,…)and2n2(n=1,2,3,…)which, with respect to a finite invariant measure equivalent to the surface area measure, are isomorphic to one-sided Bernoulli shifts of maximal entropy. The maps in question were constructed by Böettcher (1903--1904) and independently by Lattès (1919). They were the first examples of maps with Julia set equal to the whole sphere.


1944 ◽  
Vol 45 (4) ◽  
pp. 793 ◽  
Author(s):  
P. A. P. Moran
Keyword(s):  

2018 ◽  
Vol 70 (4) ◽  
pp. 804-823 ◽  
Author(s):  
Apostolos Giannopoulos ◽  
Alexander Koldobsky ◽  
Petros Valettas

AbstractWe provide general inequalities that compare the surface area S(K) of a convex body K in ℝn to the minimal, average, or maximal surface area of its hyperplane or lower dimensional projections. We discuss the same questions for all the quermassintegrals of K. We examine separately the dependence of the constants on the dimension in the case where K is in some of the classical positions or K is a projection body. Our results are in the spirit of the hyperplane problem, with sections replaced by projections and volume by surface area.


2011 ◽  
Vol 53 (3) ◽  
pp. 717-726 ◽  
Author(s):  
BAOCHENG ZHU ◽  
NI LI ◽  
JIAZU ZHOU

AbstractIn this paper, we establish a number of Lp-affine isoperimetric inequalities for Lp-geominimal surface area. In particular, we obtain a Blaschke–Santaló type inequality and a cyclic inequality between different Lp-geominimal surface areas of a convex body.


Sign in / Sign up

Export Citation Format

Share Document