scholarly journals ON NUMERICAL REALIZATION OF QUASIOPTIMAL PARAMETER CHOICES IN (ITERATED) TIKHONOV AND LAVRENTIEV REGULARIZATION

2009 ◽  
Vol 14 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Toomas Raus ◽  
Uno Hämarik

We consider linear ill‐posed problems in Hilbert spaces with noisy right hand side and given noise level. For approximation of the solution the Tikhonov method or the iterated variant of this method may be used. In self‐adjoint problems the Lavrentiev method or its iterated variant are used. For a posteriori choice of the regularization parameter often quasioptimal rules are used which require computing of additionally iterated approximations. In this paper we propose for parameter choice alternative numerical schemes, using instead of additional iterations linear combinations of approximations with different parameters.

2008 ◽  
Vol 8 (3) ◽  
pp. 237-252 ◽  
Author(s):  
U HAMARIK ◽  
R. PALM ◽  
T. RAUS

AbstractWe consider linear ill-posed problems in Hilbert spaces with a noisy right hand side and a given noise level. To solve non-self-adjoint problems by the (it-erated) Tikhonov method, one effective rule for choosing the regularization parameter is the monotone error rule (Tautenhahn and Hamarik, Inverse Problems, 1999, 15, 1487– 1505). In this paper we consider the solution of self-adjoint problems by the (iterated) Lavrentiev method and propose for parameter choice an analog of the monotone error rule. We prove under certain mild assumptions the quasi-optimality of the proposed rule guaranteeing convergence and order optimal error estimates. Numerical examples show for the proposed rule and its modifications much better performance than for the modified discrepancy principle.


2009 ◽  
Vol 14 (2) ◽  
pp. 187-198 ◽  
Author(s):  
Toomas Raus ◽  
Uno Hämarik

We propose a new a posteriori rule for choosing the regularization parameter α in (iterated) Tikhonov method for solving linear ill‐posed problems in Hilbert spaces. We assume that data are noisy but noise level δ is given. We prove that (iterated) Tikhonov approximation with proposed choice of α converges to the solution as δ → 0 and has order optimal error estimates. Under certain mild assumption the quasioptimality of proposed rule is also proved. Numerical examples show the advantage of the new rule over the monotone error rule, especially in case of rough δ.


2020 ◽  
Vol 28 (5) ◽  
pp. 659-676
Author(s):  
Dinh Nho Hào ◽  
Nguyen Van Duc ◽  
Nguyen Van Thang ◽  
Nguyen Trung Thành

AbstractThe problem of determining the initial condition from noisy final observations in time-fractional parabolic equations is considered. This problem is well known to be ill-posed, and it is regularized by backward Sobolev-type equations. Error estimates of Hölder type are obtained with a priori and a posteriori regularization parameter choice rules. The proposed regularization method results in a stable noniterative numerical scheme. The theoretical error estimates are confirmed by numerical tests for one- and two-dimensional equations.


2003 ◽  
Vol 2003 (39) ◽  
pp. 2487-2499 ◽  
Author(s):  
Santhosh George ◽  
M. Thamban Nair

Recently, Tautenhahn and Hämarik (1999) have considered a monotone rule as a parameter choice strategy for choosing the regularization parameter while considering approximate solution of an ill-posed operator equationTx=y, whereTis a bounded linear operator between Hilbert spaces. Motivated by this, we propose a new discrepancy principle for the simplified regularization, in the setting of Hilbert scales, whenTis a positive and selfadjoint operator. When the datayis known only approximately, our method provides optimal order under certain natural assumptions on the ill-posedness of the equation and smoothness of the solution. The result, in fact, improves an earlier work of the authors (1997).


2011 ◽  
Vol 11 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Kosnazar Sharipov

AbstractWe consider the classical ill-posed problem of the recovery of continuous functions from noisy Fourier coefficients. For the classes of functions given in terms of generalized smoothness, we present a priori and a posteriori regularization parameter choice realizing an order-optimal error bound.


2015 ◽  
Vol 15 (2) ◽  
pp. 213-219 ◽  
Author(s):  
Sergei V. Pereverzyev ◽  
Pavlo Tkachenko

AbstractIn the present paper, we consider the approximation of the solution of an ill-posed spherical pseudo-differential equation at a given point. While the methods for approximating the whole solution are well-studied in Hilbert spaces, such as the space of square-summable functions, the computation of values of the solution at given points is much less studied. This can be explained, in particular, by the fact that for square-summable functions the functional of pointwise evaluation is, in general, not well defined. To overcome this limitation we adjust the regularized least-squares method of An, Chen, Sloan and Womersley [Siam J. Numer. Anal. 50 (2012), no. 3, 1513–1534] by using a special a posteriori parameter choice rule. We also illustrate our theoretical findings by numerical results for the reconstruction of the solution at a given point.


2021 ◽  
Vol 6 (10) ◽  
pp. 11425-11448
Author(s):  
Xuemin Xue ◽  
◽  
Xiangtuan Xiong ◽  
Yuanxiang Zhang ◽  

<abstract><p>The predication of the helium diffusion concentration as a function of a source term in diffusion equation is an ill-posed problem. This is called inverse radiogenic source problem. Although some classical regularization methods have been considered for this problem, we propose two new fractional regularization methods for the purpose of reducing the over-smoothing of the classical regularized solution. The corresponding error estimates are proved under the a-priori and the a-posteriori regularization parameter choice rules. Some numerical examples are shown to display the necessarity of the methods.</p></abstract>


2019 ◽  
Vol 27 (2) ◽  
pp. 283-300 ◽  
Author(s):  
Bernd Hofmann ◽  
Stefan Kindermann ◽  
Peter Mathé

Abstract The authors study Tikhonov regularization of linear ill-posed problems with a general convex penalty defined on a Banach space. It is well known that the error analysis requires smoothness assumptions. Here such assumptions are given in form of inequalities involving only the family of noise-free minimizers along the regularization parameter and the (unknown) penalty-minimizing solution. These inequalities control, respectively, the defect of the penalty, or likewise, the defect of the whole Tikhonov functional. The main results provide error bounds for a Bregman distance, which split into two summands: the first smoothness-dependent term does not depend on the noise level, whereas the second term includes the noise level. This resembles the situation of standard quadratic Tikhonov regularization in Hilbert spaces. It is shown that variational inequalities, as these were studied recently, imply the validity of the assumptions made here. Several examples highlight the results in specific applications.


Sign in / Sign up

Export Citation Format

Share Document