scholarly journals A note on periodic solutions of functional differential equations

1985 ◽  
Vol 8 (2) ◽  
pp. 413-415
Author(s):  
S. H. Chang

The existence of periodic solution for a certain functional differential equation with quasibounded nonlinearity is established.

1986 ◽  
Vol 102 (3-4) ◽  
pp. 259-262 ◽  
Author(s):  
J. G. Dos Reis ◽  
R. L. S. Baroni

SynopsisLet Ca be the set of all the continuous functions from the interval [−r, 0] on the sphere of radius a, on the plane. We prove, under certains conditions, that a retarded autonomous differential equation that leaves Ca invariant has a non-constant periodic solution.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Ruyun Ma ◽  
Yanqiong Lu

We study one-signed periodic solutions of the first-order functional differential equationu'(t)=-a(t)u(t)+λb(t)f(u(t-τ(t))),t∈Rby using global bifurcation techniques. Wherea,b∈C(R,[0,∞))areω-periodic functions with∫0ωa(t)dt>0,∫0ωb(t)dt>0,τis a continuousω-periodic function, andλ>0is a parameter.f∈C(R,R)and there exist two constantss2<0<s1such thatf(s2)=f(0)=f(s1)=0,f(s)>0fors∈(0,s1)∪(s1,∞)andf(s)<0fors∈(-∞,s2)∪(s2,0).


2004 ◽  
Vol 2004 (10) ◽  
pp. 897-905 ◽  
Author(s):  
Xi-lan Liu ◽  
Guang Zhang ◽  
Sui Sun Cheng

We establish the existence of three positive periodic solutions for a class of delay functional differential equations depending on a parameter by the Leggett-Williams fixed point theorem.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Cemil Tunç ◽  
Ramazan Yazgan

Using Lyapunov-Krasovskii functional approach, we establish a new result to guarantee the existence of periodic solutions of a certain multidelay nonlinear functional differential equation of second order. By this work, we extend and improve some earlier result in the literature.


2012 ◽  
Vol 616-618 ◽  
pp. 2137-2141
Author(s):  
Zhi Min Luo ◽  
Bei Fei Chen

This paper studied the asymptotic behavior of a class of nonlinear functional differential equations by using the Bellman-Bihari inequality. We obtain results which extend and complement those in references. The results indicate that all non-oscillatory continuable solutions of equation are asymptotic to at+b as under some sufficient conditions, where a,b are real constants. An example is provided to illustrate the application of the results.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
T. E. Govindan

This paper studies the existence and uniqueness of a mild solution for a neutral stochastic partial functional differential equation using a local Lipschitz condition. When the neutral term is zero and even in the deterministic special case, the result obtained here appears to be new. An example is included to illustrate the theory.


1990 ◽  
Vol 41 (3) ◽  
pp. 347-354
Author(s):  
Zhanyuan Hou

Under the assumption that Ca = C([−r, 0], Sn−1(a)) is positively invariant for a > 0, two necessary and sufficient conditions are obtained for an autonomous retarded functional differential equation to have a non-trivial periodic solution in Ca. Moreover, a feasible sufficient condition is given, which is better for n = 2 than that given by Dos Reis and Baroni.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jun Zhou ◽  
Jun Shen

<p style='text-indent:20px;'>In this paper we consider the existence, uniqueness, boundedness and continuous dependence on initial data of positive solutions for the general iterative functional differential equation <inline-formula><tex-math id="M1">\begin{document}$ \dot{x}(t) = f(t,x(t),x^{[2]}(t),...,x^{[n]}(t)). $\end{document}</tex-math></inline-formula> As <inline-formula><tex-math id="M2">\begin{document}$ n = 2 $\end{document}</tex-math></inline-formula>, this equation can be regarded as a mixed-type functional differential equation with state-dependence <inline-formula><tex-math id="M3">\begin{document}$ \dot{x}(t) = f(t,x(t),x(T(t,x(t)))) $\end{document}</tex-math></inline-formula> of a special form but, being a nonlinear operator, <inline-formula><tex-math id="M4">\begin{document}$ n $\end{document}</tex-math></inline-formula>-th order iteration makes more difficulties in estimation than usual state-dependence. Then we apply our results to the existence, uniqueness, boundedness, asymptotics and continuous dependence of solutions for the mixed-type functional differential equation. Finally, we present two concrete examples to show the boundedness and asymptotics of solutions to these two types of equations respectively.</p>


2016 ◽  
Vol 8 (2) ◽  
pp. 255-270
Author(s):  
Mouataz Billah Mesmouli ◽  
Abdelouaheb Ardjouni ◽  
Ahcene Djoudi

Abstract In this paper, we study the existence of periodic and non-negative periodic solutions of the nonlinear neutral differential equation $${{\rm{d}} \over {{\rm{dt}}}}{\rm{x}}({\rm{t}}) = - {\rm{a}}\;({\rm{t}})\;{\rm{h}}\;({\rm{x}}\;({\rm{t}})) + {{\rm{d}} \over {{\rm{dt}}}}{\rm{Q}}\;({\rm{t}},\;{\rm{x}}\;({\rm{t}} - {\rm \tau} \;({\rm{t}}))) + {\rm{G}}\;({\rm{t}},\;{\rm{x}}({\rm{t}}),\;{\rm{x}}\;({\rm{t}} - {\rm \tau} \;({\rm{t}}))).$$ We invert this equation to construct a sum of a completely continuous map and a large contraction which is suitable for applying the modificatition of Krasnoselskii’s theorem. The Caratheodory condition is used for the functions Q and G.


1978 ◽  
Vol 26 (3) ◽  
pp. 323-329 ◽  
Author(s):  
Hiroshi Onose

AbstractIn the last few years, the oscillatory behavior of functional differential equations has been investigated by many authors. But much less is known about the first-order functional differential equations. Recently, Tomaras (1975b) considered the functional differential equation and gave very interesting results on this problem, namely the sufficient conditions for its solutions to oscillate. The purpose of this paper is to extend and improve them, by examining the more general functional differential equation


Sign in / Sign up

Export Citation Format

Share Document