scholarly journals Thin circular plate uniformaly loaded over a concentric elliptic path and supported on columns

1986 ◽  
Vol 9 (1) ◽  
pp. 161-174
Author(s):  
W. A. Bassali

Within the limitations of the classical thin plate theory expressions are obtained for the small deflections of a thin isotropic circular plate uniformly loaded over a concentric ellipse and supported by four columns at the vertices of a rectangle whose sides are parallel to the axes of the ellipse. Formulae are given for the moments and shears at the centre of the plate and on the edge. Limiting cases are investigated.

1959 ◽  
Vol 55 (1) ◽  
pp. 110-120 ◽  
Author(s):  
W. A. Bassali

ABSTRACTAn exact solution in finite terms is derived within the limitations of the classical thin-plate theory, for the problem of a thin circular plate acted upon normally by hydrostatic pressure distributed over the area of a concentric ellipse, and subject to boundary conditions covering the usual rigidly clamped and simply supported boundaries.


1973 ◽  
Vol 73 (1) ◽  
pp. 279-282 ◽  
Author(s):  
N. W. Murray

AbstractThe solution for a simply supported many-sided polygonal plate does not agree with that for the corresponding circular plate. This paper describes the earlier work of Rao and Rajaiah on polygonal plates and then explains why best convergence of series solutions occurs when the boundary conditions are defined as


Author(s):  
Giovanni Tocci Monaco ◽  
Nicholas Fantuzzi ◽  
Francesco Fabbrocino ◽  
Raimondo Luciano

AbstractIn this work, the bending behavior of nanoplates subjected to both sinusoidal and uniform loads in hygrothermal environment is investigated. The present plate theory is based on the classical laminated thin plate theory with strain gradient effect to take into account the nonlocality present in the nanostructures. The equilibrium equations have been carried out by using the principle of virtual works and a system of partial differential equations of the sixth order has been carried out, in contrast to the classical thin plate theory system of the fourth order. The solution has been obtained using a trigonometric expansion (e.g., Navier method) which is applicable to simply supported boundary conditions and limited lamination schemes. The solution is exact for sinusoidal loads; nevertheless, convergence has to be proved for other load types such as the uniform one. Both the effect of the hygrothermal loads and lamination schemes (cross-ply and angle-ply nanoplates) on the bending behavior of thin nanoplates are studied. Results are reported in dimensionless form and validity of the present methodology has been proven, when possible, by comparing the results to the ones from the literature (available only for cross-ply laminates). Novel applications are shown both for cross- and angle-ply laminated which can be considered for further developments in the same topic.


1955 ◽  
Vol 6 (3) ◽  
pp. 196-204 ◽  
Author(s):  
D. E. R. Godfrey

SummaryThe equations of thin plate theory are expressed in polar co-ordinates and transformed using the Mellin transform. Problems involving discontinuous and isolated normal loadings may then be solved in the case of the built-in or freely supported wedge-shaped boundary.


Sign in / Sign up

Export Citation Format

Share Document