scholarly journals On the differential system govering flows in magnetic field with data inLp

1998 ◽  
Vol 21 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Fengxin Chen ◽  
Ping Wang ◽  
Chaoshun Qu

In this paper we study the system governing flows in the magnetic field within the earth. The system is similar to the magnetohydrodynamic (MHD) equations. For initial data in spaceLp, we obtained the local in time existence and uniqueness ofweak solutions of the system subject to appropriate initial and boundary conditions.

1999 ◽  
Vol 22 (4) ◽  
pp. 823-834
Author(s):  
Peter Bates ◽  
Fengxin Chen ◽  
Ping Wang

In this paper, we study the system governing flows in the magnetic field within the earth. The system is similar to the magnetohydrodynamic (MHD) equations. By establishing a new priori estimates and following Calderón's procedure for the Navier Stokes equations [1], we obtained, for initial data in spaceLp, the global in time existence and uniqueness of weak solution of the system subject to appropriate conditions.


Author(s):  
Thomas Wiegelmann

Magnetohydrodynamic equilibria are time-independent solutions of the full magnetohydrodynamic (MHD) equations. An important class are static equilibria without plasma flow. They are described by the magnetohydrostatic equations j×B=∇p+ρ∇Ψ,∇×B=μ0j,∇·B=0. B is the magnetic field, j the electric current density, p the plasma pressure, ρ the mass density, Ψ the gravitational potential, and µ0 the permeability of free space. Under equilibrium conditions, the Lorentz force j×B is compensated by the plasma pressure gradient force and the gravity force. Despite the apparent simplicity of these equations, it is extremely difficult to find exact solutions due to their intrinsic nonlinearity. The problem is greatly simplified for effectively two-dimensional configurations with a translational or axial symmetry. The magnetohydrostatic (MHS) equations can then be transformed into a single nonlinear partial differential equation, the Grad–Shafranov equation. This approach is popular as a first approximation to model, for example, planetary magnetospheres, solar and stellar coronae, and astrophysical and fusion plasmas. For systems without symmetry, one has to solve the full equations in three dimensions, which requires numerically expensive computer programs. Boundary conditions for these systems can often be deduced from measurements. In several astrophysical plasmas (e.g., the solar corona), the magnetic pressure is orders of magnitudes higher than the plasma pressure, which allows a neglect of the plasma pressure in lowest order. If gravity is also negligible, Equation 1 then implies a force-free equilibrium in which the Lorentz force vanishes. Generalizations of MHS equilibria are stationary equilibria including a stationary plasma flow (e.g., stellar winds in astrophysics). It is also possible to compute MHD equilibria in rotating systems (e.g., rotating magnetospheres, rotating stellar coronae) by incorporating the centrifugal force. MHD equilibrium theory is useful for studying physical systems that slowly evolve in time. In this case, while one has an equilibrium at each time step, the configuration changes, often in response to temporal changes of the measured boundary conditions (e.g., the magnetic field of the Sun for modeling the corona) or of external sources (e.g., mass loading in planetary magnetospheres). Finally, MHD equilibria can be used as initial conditions for time-dependent MHD simulations. This article reviews the various analytical solutions and numerical techniques to compute MHD equilibria, as well as applications to the Sun, planetary magnetospheres, space, and laboratory plasmas.


2014 ◽  
Vol 670-671 ◽  
pp. 626-629
Author(s):  
Roman Brizitskii ◽  
Dmitry Tereshko

The new control problems for the stationary magnetohydrodynamics equations under inhomogeneous boundary conditions for the magnetic field are considered. In these problems we use velocity and magnetic field boundary controls to minimize functionals depended on velocity and pressure. We study uniqueness and stability of solutions to these control problems and discuss some computational results.


Sign in / Sign up

Export Citation Format

Share Document