Magnetohydrodynamic Equilibria

Author(s):  
Thomas Wiegelmann

Magnetohydrodynamic equilibria are time-independent solutions of the full magnetohydrodynamic (MHD) equations. An important class are static equilibria without plasma flow. They are described by the magnetohydrostatic equations j×B=∇p+ρ∇Ψ,∇×B=μ0j,∇·B=0. B is the magnetic field, j the electric current density, p the plasma pressure, ρ the mass density, Ψ the gravitational potential, and µ0 the permeability of free space. Under equilibrium conditions, the Lorentz force j×B is compensated by the plasma pressure gradient force and the gravity force. Despite the apparent simplicity of these equations, it is extremely difficult to find exact solutions due to their intrinsic nonlinearity. The problem is greatly simplified for effectively two-dimensional configurations with a translational or axial symmetry. The magnetohydrostatic (MHS) equations can then be transformed into a single nonlinear partial differential equation, the Grad–Shafranov equation. This approach is popular as a first approximation to model, for example, planetary magnetospheres, solar and stellar coronae, and astrophysical and fusion plasmas. For systems without symmetry, one has to solve the full equations in three dimensions, which requires numerically expensive computer programs. Boundary conditions for these systems can often be deduced from measurements. In several astrophysical plasmas (e.g., the solar corona), the magnetic pressure is orders of magnitudes higher than the plasma pressure, which allows a neglect of the plasma pressure in lowest order. If gravity is also negligible, Equation 1 then implies a force-free equilibrium in which the Lorentz force vanishes. Generalizations of MHS equilibria are stationary equilibria including a stationary plasma flow (e.g., stellar winds in astrophysics). It is also possible to compute MHD equilibria in rotating systems (e.g., rotating magnetospheres, rotating stellar coronae) by incorporating the centrifugal force. MHD equilibrium theory is useful for studying physical systems that slowly evolve in time. In this case, while one has an equilibrium at each time step, the configuration changes, often in response to temporal changes of the measured boundary conditions (e.g., the magnetic field of the Sun for modeling the corona) or of external sources (e.g., mass loading in planetary magnetospheres). Finally, MHD equilibria can be used as initial conditions for time-dependent MHD simulations. This article reviews the various analytical solutions and numerical techniques to compute MHD equilibria, as well as applications to the Sun, planetary magnetospheres, space, and laboratory plasmas.

1979 ◽  
Vol 21 (1) ◽  
pp. 85-96 ◽  
Author(s):  
Shadia Rifai Habbal ◽  
Tai-Fu Tuan

This paper examines the nature of plane, steady, incompressible MHD flow in a purely hyperbolic magnetic field. It is shown that in such a magnetic field the MHD equations can yield exact analytic solutions for the plasma flow. The flow has the following properties. In the far region where the conductivity is assumed to be sufficiently high so that the plasma is effectively ‘ frozen ’ to the magnetic field, the flow pattern is radial. The plasma motion is directed towards the neutral line in the incident ‘ sectors ’ and away from it in the outgoing ‘ sectors ’ with a consequent reversal in direction across the magnetic separatrices where the solution becomes singular. The plasma pressure and density in this flow are calculated and it is shown that the latter remains constant along a streamline. It is further shown that a uniform finite conductivity is not compatible with a stagnation point at the magnetic null point. However, for a parabolic increase of conductivity with increasing distance from that point, plasma flow with uniform density along hyperbolic streamlines is shown to be possible. The relevance of these flows to the magnetic field merging problem is discussed.


1998 ◽  
Vol 21 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Fengxin Chen ◽  
Ping Wang ◽  
Chaoshun Qu

In this paper we study the system governing flows in the magnetic field within the earth. The system is similar to the magnetohydrodynamic (MHD) equations. For initial data in spaceLp, we obtained the local in time existence and uniqueness ofweak solutions of the system subject to appropriate initial and boundary conditions.


1983 ◽  
Vol 102 ◽  
pp. 473-477
Author(s):  
H. Biernat ◽  
N. Kömle ◽  
H. Rucker

In the vicinity of the Sun — especially above coronal holes — the magnetic field lines show strong non-radial divergence and considerable curvature (see e.g. Kopp and Holzer, 1976; Munro and Jackson, 1977; Ripken, 1977). In the following we study the influence of these characteristics on the expansion velocity of the solar wind.


2014 ◽  
Vol 670-671 ◽  
pp. 626-629
Author(s):  
Roman Brizitskii ◽  
Dmitry Tereshko

The new control problems for the stationary magnetohydrodynamics equations under inhomogeneous boundary conditions for the magnetic field are considered. In these problems we use velocity and magnetic field boundary controls to minimize functionals depended on velocity and pressure. We study uniqueness and stability of solutions to these control problems and discuss some computational results.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2016 ◽  
Vol 791 ◽  
pp. 568-588 ◽  
Author(s):  
Andrew D. Gilbert ◽  
Joanne Mason ◽  
Steven M. Tobias

In the process of flux expulsion, a magnetic field is expelled from a region of closed streamlines on a $TR_{m}^{1/3}$ time scale, for magnetic Reynolds number $R_{m}\gg 1$ ($T$ being the turnover time of the flow). This classic result applies in the kinematic regime where the flow field is specified independently of the magnetic field. A weak magnetic ‘core’ is left at the centre of a closed region of streamlines, and this decays exponentially on the $TR_{m}^{1/2}$ time scale. The present paper extends these results to the dynamical regime, where there is competition between the process of flux expulsion and the Lorentz force, which suppresses the differential rotation. This competition is studied using a quasi-linear model in which the flow is constrained to be axisymmetric. The magnetic Prandtl number $R_{m}/R_{e}$ is taken to be small, with $R_{m}$ large, and a range of initial field strengths $b_{0}$ is considered. Two scaling laws are proposed and confirmed numerically. For initial magnetic fields below the threshold $b_{core}=O(UR_{m}^{-1/3})$, flux expulsion operates despite the Lorentz force, cutting through field lines to result in the formation of a central core of magnetic field. Here $U$ is a velocity scale of the flow and magnetic fields are measured in Alfvén units. For larger initial fields the Lorentz force is dominant and the flow creates Alfvén waves that propagate away. The second threshold is $b_{dynam}=O(UR_{m}^{-3/4})$, below which the field follows the kinematic evolution and decays rapidly. Between these two thresholds the magnetic field is strong enough to suppress differential rotation, leaving a magnetically controlled core spinning in solid body motion, which then decays slowly on a time scale of order $TR_{m}$.


JETP Letters ◽  
2015 ◽  
Vol 101 (4) ◽  
pp. 228-231
Author(s):  
A. V. Karelin ◽  
O. Adriani ◽  
G. C. Barbarino ◽  
G. A. Bazilevskaya ◽  
R. Bellotti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document