scholarly journals Relaxation process modeling in a turbulent boundary layer with nonzero free stream turbulence

1997 ◽  
Vol 3 (3) ◽  
pp. 255-265
Author(s):  
Eugen Dyban ◽  
Ella Fridman

In order to analyze the relaxation effects in a turbulent boundary layer with zero and nonzero free stream turbulence, the Reynolds-averaged equations of motion and energy are solved. As the closure of the Reynolds-averaged equations, the transport equation for turbulent shear stresses is used. The proposed approach leads to calculation of the relaxation scales in the turbulent boundary layer with zero and nonzero free stream turbulence. Results for friction coefficients, velocity profiles, shear stresses, thickness of the boundary layer and so called “superlayer” in a flat-plate turbulent boundary layer are presented. The results obtained are in agreement with those available from the experimental data.

Author(s):  
Michael P. Schultz ◽  
Ralph J. Volino

An experimental investigation has been carried out on a transitional boundary layer subject to high (initially 9%) free-stream turbulence, strong acceleration K=ν/Uw2dUw/dxas high as9×10-6, and strong concave curvature (boundary layer thickness between 2% and 5% of the wall radius of curvature). Mean and fluctuating velocity as well as turbulent shear stress are documented and compared to results from equivalent cases on a flat wall and a wall with milder concave curvature. The data show that curvature does have a significant effect, moving the transition location upstream, increasing turbulent transport, and causing skin friction to rise by as much as 40%. Conditional sampling results are presented which show that the curvature effect is present in both the turbulent and non-turbulent zones of the transitional flow.


2016 ◽  
Vol 804 ◽  
pp. 513-530 ◽  
Author(s):  
R. Jason Hearst ◽  
Guillaume Gomit ◽  
Bharathram Ganapathisubramani

The influence of turbulence on the flow around a wall-mounted cube immersed in a turbulent boundary layer is investigated experimentally with particle image velocimetry and hot-wire anemometry. Free-stream turbulence is used to generate turbulent boundary layer profiles where the normalised shear at the cube height is fixed, but the turbulence intensity at the cube height is adjustable. The free-stream turbulence is generated with an active grid and the turbulent boundary layer is formed on an artificial floor in a wind tunnel. The boundary layer development Reynolds number ($Re_{x}$) and the ratio of the cube height ($h$) to the boundary layer thickness ($\unicode[STIX]{x1D6FF}$) are held constant at $Re_{x}=1.8\times 10^{6}$ and $h/\unicode[STIX]{x1D6FF}=0.47$. It is demonstrated that the stagnation point on the upstream side of the cube and the reattachment length in the wake of the cube are independent of the incoming profile for the conditions investigated here. In contrast, the wake length monotonically decreases for increasing turbulence intensity but fixed normalised shear – both quantities measured at the cube height. The wake shortening is a result of heightened turbulence levels promoting wake recovery from high local velocities and the reduction in strength of a dominant shedding frequency.


1983 ◽  
Vol 105 (1) ◽  
pp. 33-40 ◽  
Author(s):  
M. F. Blair

An experimental research program was conducted to determine the influence of free-stream turbulence on zero pressure gradient, fully turbulent boundary layer flow. Connective heat transfer coefficients and boundary layer mean velocity and temperature profile data were obtained for a constant free-stream velocity of 30 m/s and free-stream turbulence intensities ranging from approximately 1/4 to 7 percent. Free-stream multicomponent turbulence intensity, longitudinal integral scale, and spectral distributions were obtained for the full range of turbulence levels. The test results with 1/4 percent free-stream turbulence indicate that these data were in excellent agreement with classic two-dimensional, low free-stream turbulence, turbulent boundary layer correlations. For fully turbulent boundary layer flow, both the skin friction and heat transfer were found to be substantially increased (up to ∼ 20 percent) for the higher levels of free-stream turbulence. Detailed results of the experimental study are presented in the present paper (Part I). A comprehensive analysis is provided in a companion paper (Part II).


1995 ◽  
Vol 30 (2) ◽  
pp. 210-218 ◽  
Author(s):  
V. K. Kuzenkov ◽  
V. N. Levitskii ◽  
E. U. Repik ◽  
Yu. P. Sosedko

Sign in / Sign up

Export Citation Format

Share Document