scholarly journals The MX/G/1 queue with queue length dependent service times

2001 ◽  
Vol 14 (4) ◽  
pp. 399-419 ◽  
Author(s):  
Bong Dae Choi ◽  
Yeong Cheol Kim ◽  
Yang Woo Shin ◽  
Charles E. M. Pearce

We deal with the MX/G/1 queue where service times depend on the queue length at the service initiation. By using Markov renewal theory, we derive the queue length distribution at departure epochs. We also obtain the transient queue length distribution at time t and its limiting distribution and the virtual waiting time distribution. The numerical results for transient mean queue length and queue length distributions are given.

1981 ◽  
Vol 13 (03) ◽  
pp. 619-630 ◽  
Author(s):  
Yukio Takahashi

It is shown that, in a multiserver queue with interarrival and service-time distributions of phase type (PH/PH/c), the waiting-time distributionW(x) has an asymptotically exponential tail, i.e., 1 –W(x) ∽Ke–ckx. The parameter k is the unique positive number satisfyingT*(ck)S*(–k) = 1, whereT*(s) andS*(s) are the Laplace–Stieltjes transforms of the interarrival and the service-time distributions. It is also shown that the queue-length distribution has an asymptotically geometric tail with the rate of decay η =T*(ck). The proofs of these results are based on the matrix-geometric form of the state probabilities of the system in the steady state.The equation for k shows interesting relations between single- and multiserver queues in the rates of decay of the tails of the waiting-time and the queue-length distributions.The parameters k and η can be easily computed by solving an algebraic equation. The multiplicative constantKis not so easy to compute. In order to obtain its numerical value we have to solve the balance equations or estimate it from simulation.


1998 ◽  
Vol 12 (1) ◽  
pp. 125-139 ◽  
Author(s):  
Bong Dae Choi ◽  
Yutae Lee ◽  
Doo Il Choi

We model the virtual contention queue in an ATM nonblocking packet switch with capacity c and input queues by a Geox1, Geox2/D/c Head-of-Line priority queueing system with Random Order Selection within each class and find the joint queue length distribution and the waiting time distribution for each class.


1981 ◽  
Vol 13 (3) ◽  
pp. 619-630 ◽  
Author(s):  
Yukio Takahashi

It is shown that, in a multiserver queue with interarrival and service-time distributions of phase type (PH/PH/c), the waiting-time distribution W(x) has an asymptotically exponential tail, i.e., 1 – W(x) ∽ Ke–ckx. The parameter k is the unique positive number satisfying T*(ck) S*(–k) = 1, where T*(s) and S*(s) are the Laplace–Stieltjes transforms of the interarrival and the service-time distributions. It is also shown that the queue-length distribution has an asymptotically geometric tail with the rate of decay η = T*(ck). The proofs of these results are based on the matrix-geometric form of the state probabilities of the system in the steady state.The equation for k shows interesting relations between single- and multiserver queues in the rates of decay of the tails of the waiting-time and the queue-length distributions.The parameters k and η can be easily computed by solving an algebraic equation. The multiplicative constant K is not so easy to compute. In order to obtain its numerical value we have to solve the balance equations or estimate it from simulation.


1990 ◽  
Vol 27 (02) ◽  
pp. 401-408
Author(s):  
Nico M. Van Dijk ◽  
Eric Smeitink

We study a queueing system with a finite number of input sources. Jobs are individually generated by a source but wait to be served in batches, during which the input of that source is stopped. The service speed of a server depends on the mode of other sources and thus includes interdependencies. The input and service times are allowed to be generally distributed. A classical example is a machine repair system where the machines are subject to shocks causing cumulative damage. A product-form expression is obtained for the steady state joint queue length distribution and shown to be insensitive (i.e. to depend on only mean input and service times). The result is of both practical and theoretical interest as an extension of more standard batch service systems.


1980 ◽  
Vol 12 (03) ◽  
pp. 799-823
Author(s):  
Per Hokstad

The many-server queue with service time having rational Laplace transform of order 2 is considered. An expression for the asymptotic queue-length distribution is obtained. A relatively simple formula for the mean queue length is also found. A few numerical results on the mean queue length and on the probability of having to wait are given for the case of three servers. Some approximations for these quantities are also considered.


1980 ◽  
Vol 12 (3) ◽  
pp. 799-823 ◽  
Author(s):  
Per Hokstad

The many-server queue with service time having rational Laplace transform of order 2 is considered. An expression for the asymptotic queue-length distribution is obtained. A relatively simple formula for the mean queue length is also found. A few numerical results on the mean queue length and on the probability of having to wait are given for the case of three servers. Some approximations for these quantities are also considered.


2019 ◽  
Vol 53 (2) ◽  
pp. 367-387
Author(s):  
Shaojun Lan ◽  
Yinghui Tang

This paper deals with a single-server discrete-time Geo/G/1 queueing model with Bernoulli feedback and N-policy where the server leaves for modified multiple vacations once the system becomes empty. Applying the law of probability decomposition, the renewal theory and the probability generating function technique, we explicitly derive the transient queue length distribution as well as the recursive expressions of the steady-state queue length distribution. Especially, some corresponding results under special cases are directly obtained. Furthermore, some numerical results are provided for illustrative purposes. Finally, a cost optimization problem is numerically analyzed under a given cost structure.


1990 ◽  
Vol 27 (3) ◽  
pp. 684-692 ◽  
Author(s):  
Masakiyo Miyazawa

A direct proof is presented for the fact that the stationary system queue length distribution just after the service completion epochs in the Mx/GI/1/k queue is given by the truncation of a measure on Z+ = {0, 1, ·· ·}. The related truncation formulas are well known for the case of the traffic intensity ρ < 1 and for the virtual waiting time process in M/GI/1 with a limited waiting time (Cohen (1982) and Takács (1974)). By the duality of GI/MY/1/k to Mx/GI/1/k + 1, we get a similar result for the system queue length distribution just before the arrival of a customer in GI/MY/1/k. We apply those results to prove that the loss probabilities of Mx/GI/1/k and GI/MY/1/k are increasing for the convex order of the service time and interarrival time distributions, respectively, if their means are fixed.


1980 ◽  
Vol 12 (01) ◽  
pp. 222-261 ◽  
Author(s):  
V. Ramaswami

We discuss a single-server queue whose input is the versatile Markovian point process recently introduced by Neuts [22] herein to be called the N-process. Special cases of the N-process discussed earlier in the literature include a number of complex models such as the Markov-modulated Poisson process, the superposition of a Poisson process and a phase-type renewal process, etc. This queueing model has great appeal in its applicability to real world situations especially such as those involving inhibition or stimulation of arrivals by certain renewals. The paper presents formulas in forms which are computationally tractable and provides a unified treatment of many models which were discussed earlier by several authors and which turn out to be special cases. Among the topics discussed are busy-period characteristics, queue-length distributions, moments of the queue length and virtual waiting time. We draw particular attention to our generalization of the Pollaczek–Khinchin formula for the Laplace–Stieltjes transform of the virtual waiting time of the M/G/1 queue to the present model and the resulting Volterra system of integral equations. The analysis presented here serves as an example of the power of Markov renewal theory.


2000 ◽  
Vol 37 (04) ◽  
pp. 1092-1098
Author(s):  
Olivier Brun ◽  
Jean-Marie Garcia

Although the M/D/1/N queueing model is well solved from a computational point of view, there is no known analytical expression of the queue length distribution. In this paper, we derive closed-form formulae for the distribution of the number of customers in the system in the finite-capacity M/D/1 queue. We also give an explicit solution for the mean queue length and the average waiting time.


Sign in / Sign up

Export Citation Format

Share Document