scholarly journals Large deviations for tandem queueing systems

1994 ◽  
Vol 7 (3) ◽  
pp. 301-330 ◽  
Author(s):  
Roland L. Dobrushin ◽  
Eugene A. Pechersky

The crude asymptotics of the large delay probability in a tandem queueing system is considered. The main result states that one of the two channels in the tandem system defines the crude asymptotics. The constant that determines the crude asymptotics is given. The results obtained are based on the large deviation principle for random processes with independent increments on an infinite interval recently established by the authors.

2010 ◽  
Vol 10 (03) ◽  
pp. 315-339 ◽  
Author(s):  
A. A. DOROGOVTSEV ◽  
O. V. OSTAPENKO

We establish the large deviation principle (LDP) for stochastic flows of interacting Brownian motions. In particular, we consider smoothly correlated flows, coalescing flows and Brownian motion stopped at a hitting moment.


2011 ◽  
Vol 2011 ◽  
pp. 1-19
Author(s):  
Qinghua Wang

We obtain a large deviation principle for the stochastic differential equations on the sphere Sd associated with the critical Sobolev Brownian vector fields.


2006 ◽  
Vol 06 (04) ◽  
pp. 487-520 ◽  
Author(s):  
FUQING GAO ◽  
JICHENG LIU

We prove large deviation principles for solutions of small perturbations of SDEs in Hölder norms and Sobolev norms, where the SDEs have non-Markovian coefficients. As an application, we obtain a large deviation principle for solutions of anticipating SDEs in terms of (r, p) capacities on the Wiener space.


Filomat ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 473-487 ◽  
Author(s):  
A. Haseena ◽  
M. Suvinthra ◽  
N. Annapoorani

A Freidlin-Wentzell type large deviation principle is derived for a class of It? type stochastic integrodifferential equations driven by a finite number of multiplicative noises of the Gaussian type. The weak convergence approach is used here to prove the Laplace principle, equivalently large deviation principle.


2020 ◽  
Vol 28 (3) ◽  
pp. 197-207
Author(s):  
Clément Manga ◽  
Auguste Aman

AbstractThis paper is devoted to derive a Freidlin–Wentzell type of the large deviation principle for stochastic differential equations with general delayed generator. We improve the result of Chi Mo and Jiaowan Luo [C. Mo and J. Luo, Large deviations for stochastic differential delay equations, Nonlinear Anal. 80 2013, 202–210].


2013 ◽  
Vol 35 (3) ◽  
pp. 968-993 ◽  
Author(s):  
PAULO VARANDAS ◽  
YUN ZHAO

AbstractWe obtain large deviation bounds for the measure of deviation sets associated with asymptotically additive and sub-additive potentials under some weak specification properties. In particular, a large deviation principle is obtained in the case of uniformly hyperbolic dynamical systems. Some applications to the study of the convergence of Lyapunov exponents are given.


1994 ◽  
Vol 7 (3) ◽  
pp. 423-436 ◽  
Author(s):  
O. V. Gulinskii ◽  
Robert S. Lipster ◽  
S. V. Lototskii

We combine the Donsker and Varadhan large deviation principle (l.d.p) for the occupation measure of a Markov process with certain results of Deuschel and Stroock, to obtain the l.d.p. for unbounded functionals. Our approach relies on the concept of exponential tightness and on the Puhalskii theorem. Three illustrative examples are considered.


Sign in / Sign up

Export Citation Format

Share Document