scholarly journals Transient analysis of a queue with queue-length dependent MAP and its application to SS7 network

1999 ◽  
Vol 12 (4) ◽  
pp. 371-392
Author(s):  
Bong Dae Choi ◽  
Sung Ho Choi ◽  
Dan Keun Sung ◽  
Tae-Hee Lee ◽  
Kyu-Seog Song

We analyze the transient behavior of a Markovian arrival queue with congestion control based on a double of thresholds, where the arrival process is a queue-length dependent Markovian arrival process. We consider Markov chain embedded at arrival epochs and derive the one-step transition probabilities. From these results, we obtain the mean delay and the loss probability of the nth arrival packet. Before we study this complex model, first we give a transient analysis of an MAP/M/1 queueing system without congestion control at arrival epochs. We apply our result to a signaling system No. 7 network with a congestion control based on thresholds.

1988 ◽  
Vol 20 (01) ◽  
pp. 99-111 ◽  
Author(s):  
Nico M. Van Dijk

Consider a perturbation in the one-step transition probabilities and rewards of a discrete-time Markov reward process with an unbounded one-step reward function. A perturbation estimate is derived for the finite horizon and average reward function. Results from [3] are hereby extended to the unbounded case. The analysis is illustrated for one- and two-dimensional queueing processes by an M/M/1-queue and an overflow queueing model with an error bound in the arrival rate.


1969 ◽  
Vol 6 (3) ◽  
pp. 704-707 ◽  
Author(s):  
Thomas L. Vlach ◽  
Ralph L. Disney

The departure process from the GI/G/1 queue is shown to be a semi-Markov process imbedded at departure points with a two-dimensional state space. Transition probabilities for this process are defined and derived from the distributions of the arrival and service processes. The one step transition probabilities and a stationary distribution are obtained for the imbedded two-dimensional Markov chain.


1988 ◽  
Vol 20 (1) ◽  
pp. 99-111 ◽  
Author(s):  
Nico M. Van Dijk

Consider a perturbation in the one-step transition probabilities and rewards of a discrete-time Markov reward process with an unbounded one-step reward function. A perturbation estimate is derived for the finite horizon and average reward function. Results from [3] are hereby extended to the unbounded case. The analysis is illustrated for one- and two-dimensional queueing processes by an M/M/1-queue and an overflow queueing model with an error bound in the arrival rate.


1970 ◽  
Vol 7 (3) ◽  
pp. 771-775
Author(s):  
I. V. Basawa

Let {Xk}, k = 1, 2, ··· be a sequence of random variables forming a homogeneous Markov chain on a finite state-space, S = {1, 2, ···, s}. Xk could be thought of as the state at time k of some physical system for which are the (one-step) transition probabilities. It is assumed that all the states are inter-communicating, so that the transition matrix P = ((pij)) is irreducible.


1968 ◽  
Vol 5 (02) ◽  
pp. 350-356 ◽  
Author(s):  
R. G. Khazanie

Consider a finite Markov process {Xn } described by the one-step transition probabilities In describing the transition probabilities in the above manner we are adopting the convention that (0)0 = 1 so that the states 0 and M are absorbing, and the states 1,2,···,M-1 are transient.


1969 ◽  
Vol 6 (03) ◽  
pp. 704-707 ◽  
Author(s):  
Thomas L. Vlach ◽  
Ralph L. Disney

The departure process from the GI/G/1 queue is shown to be a semi-Markov process imbedded at departure points with a two-dimensional state space. Transition probabilities for this process are defined and derived from the distributions of the arrival and service processes. The one step transition probabilities and a stationary distribution are obtained for the imbedded two-dimensional Markov chain.


1970 ◽  
Vol 7 (03) ◽  
pp. 771-775
Author(s):  
I. V. Basawa

Let {Xk }, k = 1, 2, ··· be a sequence of random variables forming a homogeneous Markov chain on a finite state-space, S = {1, 2, ···, s}. Xk could be thought of as the state at time k of some physical system for which are the (one-step) transition probabilities. It is assumed that all the states are inter-communicating, so that the transition matrix P = ((pij )) is irreducible.


1968 ◽  
Vol 5 (2) ◽  
pp. 350-356 ◽  
Author(s):  
R. G. Khazanie

Consider a finite Markov process {Xn} described by the one-step transition probabilities In describing the transition probabilities in the above manner we are adopting the convention that (0)0 = 1 so that the states 0 and M are absorbing, and the states 1,2,···,M-1 are transient.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 729
Author(s):  
Miquel Montero

Random walks with invariant loop probabilities comprise a wide family of Markov processes with site-dependent, one-step transition probabilities. The whole family, which includes the simple random walk, emerges from geometric considerations related to the stereographic projection of an underlying geometry into a line. After a general introduction, we focus our attention on the elliptic case: random walks on a circle with built-in reflexing boundaries.


1981 ◽  
Vol 13 (01) ◽  
pp. 61-83 ◽  
Author(s):  
Richard Serfozo

This is a study of simple random walks, birth and death processes, and M/M/s queues that have transition probabilities and rates that are sequentially controlled at jump times of the processes. Each control action yields a one-step reward depending on the chosen probabilities or transition rates and the state of the process. The aim is to find control policies that maximize the total discounted or average reward. Conditions are given for these processes to have certain natural monotone optimal policies. Under such a policy for the M/M/s queue, for example, the service and arrival rates are non-decreasing and non-increasing functions, respectively, of the queue length. Properties of these policies and a linear program for computing them are also discussed.


Sign in / Sign up

Export Citation Format

Share Document