scholarly journals WEAK CONVERGENCE FOR MULTIPLE STOCHASTIC INTEGRALS IN SKOROHOD SPACE

2014 ◽  
Vol 22 (1) ◽  
pp. 71-84
Author(s):  
Yoon Tae Kim
2021 ◽  
Vol 58 (2) ◽  
pp. 372-393
Author(s):  
H. M. Jansen

AbstractOur aim is to find sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure of a Markov chain. First, we study properties of the state indicator function and the state occupation measure of a Markov chain. In particular, we establish weak convergence of the state occupation measure under a scaling of the generator matrix. Then, relying on the connection between the state occupation measure and the Dynkin martingale, we provide sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure. We apply our results to derive diffusion limits for the Markov-modulated Erlang loss model and the regime-switching Cox–Ingersoll–Ross process.


1992 ◽  
Vol 10 (4) ◽  
pp. 431-441 ◽  
Author(s):  
P.E. Kloeden ◽  
E. Platen ◽  
I.W. Wright

2021 ◽  
pp. 724-756
Author(s):  
James Davidson

The main object of this chapter is to prove the convergence of the covariances of stochastic processes with their increments to stochastic integrals with respect to Brownian motion. Some preliminary theory is given relating to random functionals on C, stochastic integrals, and the important Itô isometry. The main result is first proved for the tractable special cases of martingale difference increments and linear processes. The final section is devoted to proving the more difficult general case, of NED functions of mixing processes.


2013 ◽  
Vol 80 (2) ◽  
Author(s):  
Tara Raveendran ◽  
D. Roy ◽  
R. M. Vasu

The Girsanov linearization method (GLM), proposed earlier in Saha, N., and Roy, D., 2007, “The Girsanov Linearisation Method for Stochastically Driven Nonlinear Oscillators,” J. Appl. Mech.,74, pp. 885–897, is reformulated to arrive at a nearly exact, semianalytical, weak and explicit scheme for nonlinear mechanical oscillators under additive stochastic excitations. At the heart of the reformulated linearization is a temporally localized rejection sampling strategy that, combined with a resampling scheme, enables selecting from and appropriately modifying an ensemble of locally linearized trajectories while weakly applying the Girsanov correction (the Radon–Nikodym derivative) for the linearization errors. The semianalyticity is due to an explicit linearization of the nonlinear drift terms and it plays a crucial role in keeping the Radon–Nikodym derivative “nearly bounded” above by the inverse of the linearization time step (which means that only a subset of linearized trajectories with low, yet finite, probability exceeds this bound). Drift linearization is conveniently accomplished via the first few (lower order) terms in the associated stochastic (Ito) Taylor expansion to exclude (multiple) stochastic integrals from the numerical treatment. Similarly, the Radon–Nikodym derivative, which is a strictly positive, exponential (super-) martingale, is converted to a canonical form and evaluated over each time step without directly computing the stochastic integrals appearing in its argument. Through their numeric implementations for a few low-dimensional nonlinear oscillators, the proposed variants of the scheme, presently referred to as the Girsanov corrected linearization method (GCLM), are shown to exhibit remarkably higher numerical accuracy over a much larger range of the time step size than is possible with the local drift-linearization schemes on their own.


Sign in / Sign up

Export Citation Format

Share Document