Rolling of Human Bone-Metastatic Prostate Tumor Cells on Human Bone Marrow Endothelium under Shear Flow Is Mediated by E-Selectin

2004 ◽  
Vol 64 (15) ◽  
pp. 5261-5269 ◽  
Author(s):  
Charles J. Dimitroff ◽  
Mirna Lechpammer ◽  
Denise Long-Woodward ◽  
Jeffery L. Kutok
Cryobiology ◽  
1994 ◽  
Vol 31 (5) ◽  
pp. 478-482
Author(s):  
Zhong-Xing Zhang ◽  
Yuan-Ji Xu ◽  
Yuen Chen ◽  
Yan Li ◽  
Bei-Fen Shen ◽  
...  

Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1064-1070 ◽  
Author(s):  
P De Fabritiis ◽  
M Bregni ◽  
J Lipton ◽  
J Greenberger ◽  
L Nadler ◽  
...  

Abstract One requirement for autologous bone marrow transplantation is the selective removal of malignant cells from normal marrow precursors. Development of a clonogenic assay that detects elimination of up to 5 logs of Burkitt's lymphoma cells in the presence of a 20-fold excess of human bone marrow has permitted the evaluation of two different methods for the selective removal of malignant cells. Treatment with 4- hydroperoxycyclophosphamide (4-HC) (60 to 100 micrograms/mL) eliminated 2.0 to 3.5 logs of clonogenic cells. Antitumor activity depended upon the concentration of 4-HC and the length of incubation, but not upon the concentration of normal bone marrow cells. Comparable removal of clonogenic Burkitt's cells was achieved by treatment with rabbit complement (C') and a combination of J5 anti-common acute lymphoblastic leukemia antigen (J5 anti-CALLA), J2 anti-gp 26, and the B1 anti-B1 murine monoclonal antibodies. A combination of 4-HC and monoclonal antibodies proved slightly but significantly more effective than either single agent in eliminating clonogenic tumor cells. Although treatment with 4-HC markedly reduced granulocyte-macrophage colony-forming units- C (GM-CFU-C) content of human bone marrow, neither treatment with 4-HC nor treatment with monoclonal antibodies and C' eliminated precursor cells that could generate new GM-CFU-C after growth in continuous bone marrow cultures. Our data suggest that treatment with 4-HC in combination with multiple monoclonal antibody reagents could be a safe and effective method of eliminating clonogenic tumor cells from human bone marrow.


1990 ◽  
Vol 2 (2) ◽  
pp. 87-91
Author(s):  
Roberto M. Lemoli ◽  
Subhash C. Gulati ◽  
Amaury Perez ◽  
Bayard D. Clarkson

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1572
Author(s):  
Jinok Noh ◽  
Jinyeong Yu ◽  
Wootak Kim ◽  
Aran Park ◽  
Ki-Sook Park

The prostate tumor microenvironment plays important roles in the metastasis and hormone-insensitive re-growth of tumor cells. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are recruited into prostate tumors to facilitate tumor microenvironment formation. However, the specific intrinsic molecules mediating BM-MSCs’ migration to prostate tumors are unknown. BM-MSCs’ migration toward a conditioned medium (CM) of hormone-insensitive (PC3 and DU145) or hormone-sensitive (LNCaP) prostate tumor cells was investigated using a three-dimensional cell migration assay and a transwell migration assay. PC3 and DU145 expressed transforming growth factor-β (TGF-β), but LNCaP did not. Regardless of TGF-β expression, BM-MSCs migrated toward the CM of PC3, DU145, or LNCaP. The CM of PC3 or DU145 expressing TGF-β increased the phosphorylation of Smad2/3 in BM-MSCs. Inactivation of TGF-β signaling in BM-MSCs using TGF-β type 1 receptor (TGFBR1) inhibitors, SB505124, or SB431542 did not allow BM-MSCs to migrate toward the CM. The CM of PC3 or DU145 enhanced N-cadherin expression on BM-MSCs, but the LNCaP CM did not. SB505124, SB431542, and TGFBR1 knockdown prevented an increase in N-cadherin expression. N-cadherin knockdown inhibited the collective migration of BM-MSCs toward the PC3 CM. We identified N-cadherin as a mediator of BM-MSCs’ migration toward hormone-insensitive prostate tumor cells expressing TGF-β and introduced a novel strategy for controlling and re-engineering the prostate tumor microenvironment.


Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1064-1070
Author(s):  
P De Fabritiis ◽  
M Bregni ◽  
J Lipton ◽  
J Greenberger ◽  
L Nadler ◽  
...  

One requirement for autologous bone marrow transplantation is the selective removal of malignant cells from normal marrow precursors. Development of a clonogenic assay that detects elimination of up to 5 logs of Burkitt's lymphoma cells in the presence of a 20-fold excess of human bone marrow has permitted the evaluation of two different methods for the selective removal of malignant cells. Treatment with 4- hydroperoxycyclophosphamide (4-HC) (60 to 100 micrograms/mL) eliminated 2.0 to 3.5 logs of clonogenic cells. Antitumor activity depended upon the concentration of 4-HC and the length of incubation, but not upon the concentration of normal bone marrow cells. Comparable removal of clonogenic Burkitt's cells was achieved by treatment with rabbit complement (C') and a combination of J5 anti-common acute lymphoblastic leukemia antigen (J5 anti-CALLA), J2 anti-gp 26, and the B1 anti-B1 murine monoclonal antibodies. A combination of 4-HC and monoclonal antibodies proved slightly but significantly more effective than either single agent in eliminating clonogenic tumor cells. Although treatment with 4-HC markedly reduced granulocyte-macrophage colony-forming units- C (GM-CFU-C) content of human bone marrow, neither treatment with 4-HC nor treatment with monoclonal antibodies and C' eliminated precursor cells that could generate new GM-CFU-C after growth in continuous bone marrow cultures. Our data suggest that treatment with 4-HC in combination with multiple monoclonal antibody reagents could be a safe and effective method of eliminating clonogenic tumor cells from human bone marrow.


Sign in / Sign up

Export Citation Format

Share Document