scholarly journals Mammary tumor-derived transplants as breast cancer models to evaluate tumor-immune interactions and therapeutic responses

2021 ◽  
pp. canres.0253.2021
Author(s):  
Jade Moore ◽  
Lin Ma ◽  
Ann Lazar ◽  
Mary Helen Barcellos-Hoff
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Begüm Utz ◽  
Rita Turpin ◽  
Johanna Lampe ◽  
Jeroen Pouwels ◽  
Juha Klefström

Abstract Breast cancer is the most common form of cancer in women. Despite significant therapeutic advances in recent years, breast cancer also still causes the greatest number of cancer-related deaths in women, the vast majority of which (> 90%) are caused by metastases. However, very few mouse mammary cancer models exist that faithfully recapitulate the multistep metastatic process in human patients. Here we assessed the suitability of a syngrafting protocol for a Myc-driven mammary tumor model (WAP-Myc) to study autochthonous metastasis. A moderate but robust spontaneous lung metastasis rate of around 25% was attained. In addition, increased T cell infiltration was observed in metastatic tumors compared to donor and syngrafted primary tumors. Thus, the WAP-Myc syngrafting protocol is a suitable tool to study the mechanisms of metastasis in MYC-driven breast cancer.


2014 ◽  
Author(s):  
Raul M Luque ◽  
Mario Duran-Prado ◽  
David Rincon-Fernandez ◽  
Marta Hergueta-Redondo ◽  
Michael D Culler ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 480
Author(s):  
Caitlyn A. Moore ◽  
Zain Siddiqui ◽  
Griffin J. Carney ◽  
Yahaira Naaldijk ◽  
Khadidiatou Guiro ◽  
...  

Translational medicine requires facile experimental systems to replicate the dynamic biological systems of diseases. Drug approval continues to lag, partly due to incongruencies in the research pipeline that traditionally involve 2D models, which could be improved with 3D models. The bone marrow (BM) poses challenges to harvest as an intact organ, making it difficult to study disease processes such as breast cancer (BC) survival in BM, and to effective evaluation of drug response in BM. Furthermore, it is a challenge to develop 3D BM structures due to its weak physical properties, and complex hierarchical structure and cellular landscape. To address this, we leveraged 3D bioprinting to create a BM structure with varied methylcellulose (M): alginate (A) ratios. We selected hydrogels containing 4% (w/v) M and 2% (w/v) A, which recapitulates rheological and ultrastructural features of the BM while maintaining stability in culture. This hydrogel sustained the culture of two key primary BM microenvironmental cells found at the perivascular region, mesenchymal stem cells and endothelial cells. More importantly, the scaffold showed evidence of cell autonomous dedifferentiation of BC cells to cancer stem cell properties. This scaffold could be the platform to create BM models for various diseases and also for drug screening.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jonathan P. Rennhack ◽  
Briana To ◽  
Matthew Swiatnicki ◽  
Caleb Dulak ◽  
Martin P. Ogrodzinski ◽  
...  

2015 ◽  
Vol 46 (6) ◽  
pp. 2335-2345 ◽  
Author(s):  
JUAN GARONA ◽  
MARINA PIFANO ◽  
ULISES D. ORLANDO ◽  
MARIA B. PASTRIAN ◽  
NANCY B. IANNUCCI ◽  
...  

2015 ◽  
Vol 29 (10) ◽  
pp. 1468-1485 ◽  
Author(s):  
Cecilia J. Proietti ◽  
Franco Izzo ◽  
María Celeste Díaz Flaqué ◽  
Rosalía Cordo Russo ◽  
Leandro Venturutti ◽  
...  

Abstract Accumulated findings have demonstrated the presence of bidirectional interactions between progesterone receptor (PR) and the ErbB family of receptor tyrosine kinases signaling pathways in breast cancer. We previously revealed signal transducer and activator of transcription 3 (Stat3) as a nodal convergence point between said signaling pathways proving that Stat3 is activated by one of the ErbBs' ligands, heregulin (HRG)β1 via ErbB2 and through the co-option of PR as a signaling molecule. Here, we found that HRGβ1 induced Stat3 recruitment to the promoters of the progestin-regulated cell cycle modulators Bcl-XL and p21CIP1 and also stimulated Stat3 binding to the mouse mammary tumor virus promoter, which carries consensus progesterone response elements. Interestingly, HRGβ1-activated Stat3 displayed differential functions on PR activity depending on the promoter bound. Indeed, Stat3 was required for PR binding in bcl-X, p21CIP1, and c-myc promoters while exerting a PR coactivator function on the mouse mammary tumor virus promoter. Stat3 also proved to be necessary for HRGβ1-induced in vivo tumor growth. Our results endow Stat3 a novel function as a coregulator of HRGβ1-activated PR to promote breast cancer growth. These findings underscore the importance of understanding the complex interactions between PR and other regulatory factors, such as Stat3, that contribute to determine the context-dependent transcriptional actions of PR.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e76373 ◽  
Author(s):  
Kyung Eun Sung ◽  
Xiaojing Su ◽  
Erwin Berthier ◽  
Carolyn Pehlke ◽  
Andreas Friedl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document