scholarly journals WOX1 Is Essential for UVB Irradiation–Induced Apoptosis and Down-Regulated via Translational Blockade in UVB-Induced Cutaneous Squamous Cell Carcinoma In vivo

2005 ◽  
Vol 11 (16) ◽  
pp. 5769-5777 ◽  
Author(s):  
Feng-Jie Lai ◽  
Ching-Li Cheng ◽  
Shur-Tzu Chen ◽  
Chin-Han Wu ◽  
Li-Jin Hsu ◽  
...  
2019 ◽  
Vol 120 (8) ◽  
pp. 13893-13902 ◽  
Author(s):  
Wu Zhou ◽  
Shoumin Zhang ◽  
Jianguo Li ◽  
Zhenlu Li ◽  
Yuping Wang ◽  
...  

2019 ◽  
Vol 20 (14) ◽  
pp. 3428 ◽  
Author(s):  
Sakinah Hassan ◽  
Karin J. Purdie ◽  
Jun Wang ◽  
Catherine A. Harwood ◽  
Charlotte M. Proby ◽  
...  

Background: Cutaneous squamous cell carcinoma (cSCC) incidence continues to rise with increasing morbidity and mortality, with limited treatment options for advanced disease. Future improvements in targeted therapy will rely on advances in genomic/transcriptomic understanding and the use of model systems for basic research. We describe here the panel of 16 primary and metastatic cSCC cell lines developed and characterised over the past three decades in our laboratory in order to provide such a resource for future preclinical research and drug screening. Methods: Primary keratinocytes were isolated from cSCC tumours and metastases, and cell lines were established. These were characterised using short tandem repeat (STR) profiling and genotyped by whole exome sequencing. Multiple in vitro assays were performed to document their morphology, growth characteristics, migration and invasion characteristics, and in vivo xenograft growth. Results: STR profiles of the cSCC lines allow the confirmation of their unique identity. Phylogenetic trees derived from exome sequence analysis of the matched primary and metastatic lines provide insight into the genetic basis of disease progression. The results of in vivo and in vitro analyses allow researchers to select suitable cell lines for specific experimentation. Conclusions: There are few well-characterised cSCC lines available for widespread preclinical experimentation and drug screening. The described cSCC cell line panel provides a critical tool for in vitro and in vivo experimentation.


2014 ◽  
Vol 306 (5) ◽  
pp. 489-496 ◽  
Author(s):  
Dae-Kyoung Choi ◽  
Zheng Jun Li ◽  
In-Kyu Chang ◽  
Min-Kyung Yeo ◽  
Jin-Man Kim ◽  
...  

2006 ◽  
Vol 14 (4) ◽  
pp. 1405-1415 ◽  
Author(s):  
Junichi Kaganoi ◽  
Go Watanabe ◽  
Michio Okabe ◽  
Shiro Nagatani ◽  
Atsushi Kawabe ◽  
...  

2008 ◽  
Vol 89 (9) ◽  
pp. 2303-2314 ◽  
Author(s):  
Linda Struijk ◽  
Els van der Meijden ◽  
Siamaque Kazem ◽  
Jan ter Schegget ◽  
Frank R. de Gruijl ◽  
...  

Epidemiological studies have shown an association between infections by specific betapapillomaviruses, such as human papillomavirus (HPV) types 5 and 8, and cutaneous squamous cell carcinoma (SCC). The role of betapapillomaviruses in the development of cutaneous SCC is, however, still enigmatic. The ability to inhibit UVB-induced apoptosis, as demonstrated for HPV5 in vitro, may be important in this respect, as survival of DNA-damaged and mutated cells increases the risk of transformation. The aim of this study was to assess whether inhibition of UVB-induced apoptosis is a general property of betapapillomaviruses and to identify apoptotic factors that are potentially involved in this process. Primary human keratinocytes transduced with E6 and E7 of selected betapapillomaviruses (HPV5, HPV8, HPV15, HPV20, HPV24 and HPV38) were characterized and subjected to UVB irradiation. HPV8- and HPV20-expressing keratinocytes in particular showed fewer signs of apoptosis, as demonstrated by lower levels of active caspase 3, less enzymic caspase activity and less DNA fragmentation. The observed inhibition of UVB-induced apoptosis was mediated by E6 and coincided with reduced steady-state expression of the pro-apoptotic protein Bax. In conclusion, E6 of HPV8 and HPV20 reduces the apoptotic responses upon UVB irradiation when expressed in primary human keratinocytes. Infections with HPV8 and HPV20 may therefore augment the carcinogenic effect of UV radiation and potentially contribute to oncogenic transformation of the skin.


2021 ◽  
Vol 10 (5) ◽  
pp. 2219-2228
Author(s):  
Lipeng Gao ◽  
Tim Hua Wang ◽  
Champ Peng Chen ◽  
Jan Jian Xiang ◽  
Xu-Bo Zhao ◽  
...  

PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009094
Author(s):  
Aziz Aiderus ◽  
Justin Y. Newberg ◽  
Liliana Guzman-Rojas ◽  
Ana M. Contreras-Sandoval ◽  
Amanda L. Meshey ◽  
...  

The systematic identification of genetic events driving cellular transformation and tumor progression in the absence of a highly recurrent oncogenic driver mutation is a challenge in cutaneous oncology. In cutaneous squamous cell carcinoma (cuSCC), the high UV-induced mutational burden poses a hurdle to achieve a complete molecular landscape of this disease. Here, we utilized the Sleeping Beauty transposon mutagenesis system to statistically define drivers of keratinocyte transformation and cuSCC progression in vivo in the absence of UV-IR, and identified both known tumor suppressor genes and novel oncogenic drivers of cuSCC. Functional analysis confirms an oncogenic role for the ZMIZ genes, and tumor suppressive roles for KMT2C, CREBBP and NCOA2, in the initiation or progression of human cuSCC. Taken together, our in vivo screen demonstrates an extremely heterogeneous genetic landscape of cuSCC initiation and progression, which can be harnessed to better understand skin oncogenic etiology and prioritize therapeutic candidates.


Sign in / Sign up

Export Citation Format

Share Document