scholarly journals TRX-E-002-1 Induces c-Jun–Dependent Apoptosis in Ovarian Cancer Stem Cells and Prevents Recurrence In Vivo

2016 ◽  
Vol 15 (6) ◽  
pp. 1279-1290 ◽  
Author(s):  
Ayesha B. Alvero ◽  
Andrew Heaton ◽  
Eydis Lima ◽  
Mary Pitruzzello ◽  
Natalia Sumi ◽  
...  
2015 ◽  
Vol 112 (14) ◽  
pp. 4411-4416 ◽  
Author(s):  
Amit Kumar Srivastava ◽  
Chunhua Han ◽  
Ran Zhao ◽  
Tiantian Cui ◽  
Yuntao Dai ◽  
...  

Cancer stem cells (CSCs) with enhanced tumorigenicity and chemoresistance are believed to be responsible for treatment failure and tumor relapse in ovarian cancer patients. However, it is still unclear how CSCs survive DNA-damaging agent treatment. Here, we report an elevated expression of DNA polymerase η (Pol η) in ovarian CSCs isolated from both ovarian cancer cell lines and primary tumors, indicating that CSCs may have intrinsically enhanced translesion DNA synthesis (TLS). Down-regulation of Pol η blocked cisplatin-induced CSC enrichment both in vitro and in vivo through the enhancement of cisplatin-induced apoptosis in CSCs, indicating that Pol η-mediated TLS contributes to the survival of CSCs upon cisplatin treatment. Furthermore, our data demonstrated a depletion of miR-93 in ovarian CSCs. Enforced expression of miR-93 in ovarian CSCs reduced Pol η expression and increased their sensitivity to cisplatin. Taken together, our data suggest that ovarian CSCs have intrinsically enhanced Pol η-mediated TLS, allowing CSCs to survive cisplatin treatment, leading to tumor relapse. Targeting Pol η, probably through enhancement of miR-93 expression, might be exploited as a strategy to increase the efficacy of cisplatin treatment.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1678 ◽  
Author(s):  
Chiara Bellio ◽  
Celeste DiGloria ◽  
David R. Spriggs ◽  
Rosemary Foster ◽  
Whitfield B. Growdon ◽  
...  

One of the most significant therapeutic challenges in the treatment of ovarian cancer is the development of recurrent platinum-resistant disease. Cancer stem cells (CSCs) are postulated to contribute to recurrent and platinum-resistant ovarian cancer (OvCa). Drugs that selectively target CSCs may augment the standard of care cytotoxics and have the potential to prevent and/or delay recurrence. Increased reliance on metabolic pathway modulation in CSCs relative to non-CSCs offers a possible therapeutic opportunity. We demonstrate that treatment with the metabolic inhibitor CPI-613 (devimistat, an inhibitor of tricarboxylic acid (TCA) cycle) in vitro decreases CD133+ and CD117+ cell frequency relative to untreated OvCa cells, with negligible impact on non-CSC cell viability. Additionally, sphere-forming capacity and tumorigenicity in vivo are reduced in the CPI-613 treated cells. Collectively, these results suggest that treatment with CPI-613 negatively impacts the ovarian CSC population. Furthermore, CPI-613 impeded the unintended enrichment of CSC following olaparib or carboplatin/paclitaxel treatment. Collectively, our results suggest that CPI-613 preferentially targets ovarian CSCs and could be a candidate to augment current treatment strategies to extend either progression-free or overall survival of OvCa.


2012 ◽  
Vol 127 (2) ◽  
pp. 390-397 ◽  
Author(s):  
Jessica J. Shank ◽  
Kun Yang ◽  
Jacob Ghannam ◽  
Lourdes Cabrera ◽  
Carolyn J. Johnston ◽  
...  

2020 ◽  
Vol 392 (1) ◽  
pp. 112009
Author(s):  
Rohit P. Nagare ◽  
Smarakan Sneha ◽  
Syama Krishnapriya ◽  
Balaji Ramachandran ◽  
Kanchan Murhekar ◽  
...  

2020 ◽  
Vol 10 ◽  
Author(s):  
Nastassja Terraneo ◽  
Francis Jacob ◽  
Anna Dubrovska ◽  
Jürgen Grünberg

2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Wenxiang Wang ◽  
Yuxia Gao ◽  
Jing Hai ◽  
Jing Yang ◽  
Shufeng Duan

Abstract Increasing evidence shows that cancer stem cells are responsible for drug resistance and relapse of tumors. In breast cancer, human epidermal growth factor receptor 2 (HER2) induces Herceptin resistance by inducing cancer stem cells. In the present study, we explored the effect of HER2 on cancer stem cells induction and drug sensitivity of ovarian cancer cell lines. First, we found that HER2 overexpression (HER2 OE) induced, while HER2 knockdown (HER2 KD) decreased CD44+/CD24− population. Consistently, HER2 expression was closely correlated with the sphere formation efficiency (SFE) of ovarian cancer cells. Second, we found that NFκB inhibition by specific inhibitor JSH23 or siRNA targetting subunit p65 dramatically impaired the induction of ovarian cancer stem cells by HER2, indicating that NFκB mediated HER2-induced ovarian cancer stem cells. Third, we found that HER2 KD significantly attenuated the tumorigenicity of ovarian cancer cells. Further, we found that HER2 inhibition increased drastically the sensitivity of ovarian cancer cells to doxorubicin (DOX) or paclitaxel (PTX). Finally, we examined the correlation between HER2 status and stem cell-related genes expression in human ovarian tumor tissues, and found that expressions of OCT4, COX2, and Nanog were higher in HER2 positive tumors than in HER2 negative tumors. Consistently, the 5-year tumor-free survival rate of HER2 positive patients was dramatically lower than HER2 negative patients. Taken together, our data indicate that HER2 decreases drug sensitivity of ovarian cancer cells via inducing stem cell-like property.


Sign in / Sign up

Export Citation Format

Share Document