surface markers
Recently Published Documents


TOTAL DOCUMENTS

1172
(FIVE YEARS 215)

H-INDEX

71
(FIVE YEARS 7)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiayue Huang ◽  
Wenwen Zhang ◽  
Jie Yu ◽  
Yating Gou ◽  
Nizhou Liu ◽  
...  

Abstract Background Caused by the injury to the endometrial basal layer, intrauterine adhesions (IUA) are characterized by uterine cavity obliteration, leading to impaired fertility. Human amniotic mesenchymal stem cells (hAMSCs) have the potential to promote endometrial regeneration mainly through paracrine ability. PPCNg is a thermoresponsive biomaterial consisted of Poly (polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) mixed with gelatin, which has been reported as a scaffold for stem cell transplantation. This study aims to investigate the therapeutic effect of hAMSCs combined with PPCNg transplantation in promoting the regeneration of injured endometrium. Methods hAMSCs were cultured in different concentrates of PPCNg in vitro, and their proliferation, apoptosis and cell cycle were examined by CCK-8 assay and flow cytometry. Immunofluorescence was used to determine the MSCs specific surface markers. The expression of pluripotent genes was analyzed by qRT-PCR. The multiple-lineage differentiation potential was further evaluated by detecting the differentiation-related genes using qRT-PCR and specific staining. The Sprague–Dawley (SD) rat IUA model was established with 95% ethanol. hAMSCs combined with PPCNg were transplanted through intrauterine injection. The retention of DiR-labeled hAMSCs was observed by vivo fluorescence imaging. The endometrium morphology was assessed using hematoxylin and eosin (H&E) and Masson staining. Immunohistochemistry staining was performed to detect biomarkers related to endometrial proliferation, re-epithelialization, angiogenesis and endometrial receptivity. The function of regenerated endometrium was evaluated by pregnancy tests. Results hAMSCs maintained normal cell proliferation, apoptosis and cell cycle in PPCNg. Immunofluorescence and qRT-PCR showed that hAMSCs cultured in PPCNg and hAMSCs cultured alone expressed the same surface markers and pluripotent genes. hAMSCs exhibited normal multilineage differentiation potential in PPCNg. Vivo fluorescence imaging results revealed that the fluorescence intensity of hAMSCs combined with PPCNg intrauterine transplantation was stronger than that of direct hAMSCs intrauterine transplantation. Histological assays showed the increase in the thickness of endometrial and the number of endometrial glands, and the remarkably decrease in the fibrosis area in the PPCNg/hAMSCs group. The expressions of Ki-67, CK7, CK19, VEGF, ER and PR were significantly increased in the PPCNg/hAMSCs group. Moreover, the number of implanted embryos and pregnancy rate were significantly higher in the PPCNg/hAMSCs group than in the hAMSCs group. Conclusions PPCNg is suitable for growth, phenotype maintenance and multilineage differentiation of hAMSCs. hAMSCs combined with PPCNg intrauterine transplantation can facilitate the regeneration of injured endometrium by improving utilization rates of hAMSCs, and eventually restore reproductive capacity.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jaskaran Kaur ◽  
Yogita Rawat ◽  
Vikas Sood ◽  
Neha Periwal ◽  
Deepak Kumar Rathore ◽  
...  

Dengue virus can infect human megakaryocytes leading to decreased platelet biogenesis. In this article, we report a study of Dengue replication in human K562 cells undergoing PMA-induced differentiation into megakaryocytes. PMA-induced differentiation in these cells recapitulates steps of megakaryopoiesis including gene activation, expression of CD41/61 and CD61 platelet surface markers and accumulation of intracellular reactive oxygen species (ROS). Our results show differentiating megakaryocyte cells to support higher viral replication without any apparent increase in virus entry. Further, Dengue replication suppresses the accumulation of ROS in differentiating cells, probably by only augmenting the activity of the transcription factor NFE2L2 without influencing the expression of the coding gene. Interestingly pharmacological modulation of NFE2L2 activity showed a simultaneous but opposite effect on intracellular ROS and virus replication suggesting the former to have an inhibitory effect on the later. Also cells that differentiated while supporting intracellular virus replication showed reduced level of surface markers compared to uninfected differentiated cells.


STEMedicine ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. e109
Author(s):  
Xingzhi Liu ◽  
Zhihua Zhao ◽  
Zhe Zhao ◽  
Zhongjuan Xu ◽  
Junjun Cao ◽  
...  

Mesenchymal stem cells (MSCs) have shown great potentials in regenerative medicine for their low immunogenicity, multilineage differentiation potential, and extensive sources. However, the heterogeneity of MSCs limits their clinical application and industrial prospects. In this review, we introduced the heterogeneity of MSCs in terms of their applications, sources, functions, and surface markers; discussed the major factors leading to the heterogeneity in MSCs; summarized the main approaches to study the MSC heterogeneity, and addressed the clinical challenges resulting from heterogeneity. Finally, we proposed the strategies that might be used to purify the MSCs and to eliminate the heterogeneity of MSCs for their standardized production and reliable clinical application.


2022 ◽  
Vol 12 ◽  
Author(s):  
Elin Rönnberg ◽  
Daryl Zhong Hao Boey ◽  
Avinash Ravindran ◽  
Jesper Säfholm ◽  
Ann-Charlotte Orre ◽  
...  

BackgroundImmunohistochemical analysis of granule-associated proteases has revealed that human lung mast cells constitute a heterogeneous population of cells, with distinct subpopulations identified. However, a systematic and comprehensive analysis of cell-surface markers to study human lung mast cell heterogeneity has yet to be performed.MethodsHuman lung mast cells were obtained from lung lobectomies, and the expression of 332 cell-surface markers was analyzed using flow cytometry and the LEGENDScreen™ kit. Markers that exhibited high variance were selected for additional analyses to reveal whether they were correlated and whether discrete mast cell subpopulations were discernable.ResultsWe identified the expression of 102 surface markers on human lung mast cells, 23 previously not described on mast cells, of which several showed high continuous variation in their expression. Six of these markers were correlated: SUSD2, CD49a, CD326, CD34, CD66 and HLA-DR. The expression of these markers was also correlated with the size and granularity of mast cells. However, no marker produced an expression profile consistent with a bi- or multimodal distribution.ConclusionsLEGENDScreen analysis identified more than 100 cell-surface markers on mast cells, including 23 that, to the best of our knowledge, have not been previously described on human mast cells. The comprehensive expression profiling of the 332 surface markers did not identify distinct mast cell subpopulations. Instead, we demonstrate the continuous nature of human lung mast cell heterogeneity.


Author(s):  
N. V. Chueshova ◽  
I. A. Cheshik ◽  
E. A. Nadyrov ◽  
V. I. Nikolaev ◽  
S. I. Kirilenko ◽  
...  

The cell composition of native transplant autosmes (NTA) used for bone plastics was studied. The histological examination showed the fragments of bone beams with preserved osteoblasts, the foci of myeloid and lymphoid hematopoiesis and the fibrin deposits, which suggested the presence of MMSCs. Immunophenotyping of the NTA cell population revealed a high level of expression of the surface markers CD105, CD73, and CD90 characteristic for MMSC. DNA-flow cytometry of the bone dust confirmed almost complete preservation of graft viability on the 3rd day of culturing (97.7 % of live cells). The data of this study confirm the presence of the osteogenic, osteoinductive, and osteoconductive properties of the bone dust and emphasize the importance of a further study of this-type bone graft for use in surgical interventions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Avishay Dolitzky ◽  
Guy Shapira ◽  
Sharon Grisaru-Tal ◽  
Inbal Hazut ◽  
Shmulik Avlas ◽  
...  

Eosinophils are multifunctional, evolutionary conserved leukocytes that are involved in a plethora of responses ranging from regulation of tissue homeostasis to host defense and cancer. Eosinophils have been studied mostly in the context of Type 2 inflammatory responses such as those found in allergy. Nonetheless, it is now evident that they participate in Type 1 inflammatory responses and can respond to Type 1 cytokines such as IFN-γ. Recent data suggest that the pleotropic roles of eosinophils are due to heterogeneous responses to environmental cues. Despite this, the activation profile of eosinophils, in response to various stimuli is yet to be defined. To better understand the transcriptional spectrum of eosinophil activation, we exposed eosinophils to Type 1 (e.g. IFN-γ, E. coli) vs. Type 2 (e.g. IL-4) conditions and subjected them to global RNA sequencing. Our analyses show that IL-4, IFN-γ, E. coli and IFN-γ in the presence of E. coli (IFN-γ/E. coli)-stimulated eosinophils acquire distinct transcriptional profiles, which polarize them towards what we termed Type 1 and Type 2 eosinophils. Bioinformatics analyses using Gene Ontology based on biological processes revealed that different stimuli induced distinct pathways in eosinophils. These pathways were confirmed using functional assays by assessing cytokine/chemokine release (i.e. CXCL9, CCL24, TNF-α and IL-6) from eosinophils following activation. In addition, analysis of cell surface markers highlighted CD101 and CD274 as potential cell surface markers that distinguish between Type 1 and Type 2 eosinophils, respectively. Finally, the transcriptome signature of Type 1 eosinophils resembled that of eosinophils that were obtained from mice with experimental colitis whereas the transcriptome signature of Type 2 eosinophils resembled that of eosinophils from experimental asthma. Our data demonstrate that eosinophils are polarized to distinct “Type 1” and “Type 2” phenotypes following distinct stimulations. These findings provide fundamental knowledge regarding the heterogeneity of eosinophils and support the presence of transcriptional differences between Type 1 and Type 2 cells that are likely reflected by their pleotropic activities in diverse disease settings.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lingkai Zhang ◽  
Fuyuan Li ◽  
Peipei Lei ◽  
Ming Guo ◽  
Ruifang Liu ◽  
...  

Abstract Background Spermatogenesis is the process by which male gametes are formed from spermatogonial stem cells and it is essential for the reliable transmission of genetic information between generations. To date, the dynamic transcriptional changes of defined populations of male germ cells in pigs have not been reported. Results To characterize the atlas of porcine spermatogenesis, we profiled the transcriptomes of ~ 16,966 testicular cells from a 150-day-old pig testis through single-cell RNA-sequencing (scRNA-seq). The scRNA-seq analysis identified spermatogonia, spermatocytes, spermatids and three somatic cell types in porcine testes. The functional enrichment analysis demonstrated that these cell types played diverse roles in porcine spermatogenesis. The accuracy of the defined porcine germ cell types was further validated by comparing the data from scRNA-seq with those from bulk RNA-seq. Since we delineated four distinct spermatogonial subsets, we further identified CD99 and PODXL2 as novel cell surface markers for undifferentiated and differentiating spermatogonia, respectively. Conclusions The present study has for the first time analyzed the transcriptome of male germ cells and somatic cells in porcine testes through scRNA-seq. Four subsets of spermatogonia were identified and two novel cell surface markers were discovered, which would be helpful for studies on spermatogonial differentiation in pigs. The datasets offer valuable information on porcine spermatogenesis, and pave the way for identification of key molecular markers involved in development of male germ cells.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1794
Author(s):  
Francesca Sansico ◽  
Mattia Miroballo ◽  
Daniele Salvatore Bianco ◽  
Francesco Tamiro ◽  
Mattia Colucci ◽  
...  

COVID-19 is a viral infection, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and characterized by a complex inflammatory process and clinical immunophenotypes. Nowadays, several alterations of immune response within the respiratory tracts as well as at the level of the peripheral blood have been well documented. Nonetheless, their effects on COVID-19-related cell heterogeneity and disease progression are less defined. Here, we performed a single-cell RNA sequencing of about 400 transcripts relevant to immune cell function including surface markers, in mononuclear cells (PBMCs) from the peripheral blood of 50 subjects, infected with SARS-CoV-2 at the diagnosis and 27 healthy blood donors as control. We found that patients with COVID-19 exhibited an increase in COVID-specific surface markers in different subsets of immune cell composition. Interestingly, the expression of cell receptors, such as IFNGR1 and CXCR4, was reduced in response to the viral infection and associated with the inhibition of the related signaling pathways and immune functions. These results highlight novel immunoreceptors, selectively expressed in COVID-19 patients, which affect the immune functionality and are correlated with clinical outcomes.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1174
Author(s):  
Yehudit Shabat ◽  
Yaron Ilan

Background: No evidence of the possibility to alter a constituent of the immune system without directly affecting one of its associated components has been shown yet. Methods: A schematic model was developed in which two triggers, fasting and splenectomy, were studied for their ability to affect the expression of cell membrane epitopes and the cytokine secretion of out-of-body autogeneic and syngeneic lymphocytes. Results: Fasting decreased expression of CD8 and CD25 and increased TNFα levels. The effect of splenectomy as a trigger was investigated in non-fasting mice by comparing splenectomized and non-splenectomized mice. An increase in the CD8 expression and in TNFα, IFNg, and IL10 secretion was noted. The effect of splenectomy as a trigger was investigated in fasting mice by comparing splenectomized and non-splenectomized mice. Splenectomy had a significant effect on expression of CD25 and CD4 CD25 and on secretion of TNFα, IFNg, and IL10. To determine the effect of keeping the cells in an out-of-body location on the expression of lymphocyte epitopes, tubes kept on top of the cages of the fasting mice were compared with tubes kept on top of empty cages. A significant change in the CD8 expression was noted. To determine the effect of keeping cells in an out-of-body location on cytokine secretion, tubes kept on top of cages were tested for cytokine levels. A significant decrease was noted for the secretion of TNFα and IFNg. Conclusions: The data obtained from this study characterized a system for induction of correlations between two components of the immune system without a transfer of mediators. The study showed that a mouse could affect cells at a distance and alter the expression of surface markers and cytokine secretion following two types of triggers: fasting and/or splenectomy. Thus, an out-of-body correlation can be induced between two components of the immune system.


Sign in / Sign up

Export Citation Format

Share Document