Abstract C249: Down‐regulation of the HIF pathway enhances anti‐tumor effects of the mTOR inhibitor ridaforolimus in the Her2/Neu mouse model of breast cancer

Author(s):  
Alessandra Di Bacco ◽  
Marlene C. Artime ◽  
Diana Gargano ◽  
Mary‐Kamala Menon ◽  
Sudhir Rao ◽  
...  
2003 ◽  
Author(s):  
Simona Parrinello ◽  
Judith Campisi
Keyword(s):  

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1987
Author(s):  
Eleni Mavrogonatou ◽  
Adamantia Papadopoulou ◽  
Asimina Fotopoulou ◽  
Stathis Tsimelis ◽  
Heba Bassiony ◽  
...  

Down-regulation of the small leucine-rich proteoglycan decorin in the stroma is considered a poor prognostic factor for breast cancer progression. Ionizing radiation, an established treatment for breast cancer, provokes the premature senescence of the adjacent to the tumor stromal fibroblasts. Here, we showed that senescent human breast stromal fibroblasts are characterized by the down-regulation of decorin at the mRNA and protein level, as well as by its decreased deposition in the pericellular extracellular matrix in vitro. Senescence-associated decorin down-regulation is a long-lasting process rather than an immediate response to γ-irradiation. Growth factors were demonstrated to participate in an autocrine manner in decorin down-regulation, with bFGF and VEGF being the critical mediators of the phenomenon. Autophagy inhibition by chloroquine reduced decorin mRNA levels, while autophagy activation using the mTOR inhibitor rapamycin enhanced decorin transcription. Interestingly, the secretome from a series of both untreated and irradiated human breast cancer cell lines with different molecular profiles inhibited decorin expression in young and senescent stromal fibroblasts, which was annulled by SU5402, a bFGF and VEGF inhibitor. The novel phenotypic trait of senescent human breast stromal fibroblasts revealed here is added to their already described cancer-promoting role via the formation of a tumor-permissive environment.


Sign in / Sign up

Export Citation Format

Share Document