stromal fibroblasts
Recently Published Documents


TOTAL DOCUMENTS

569
(FIVE YEARS 130)

H-INDEX

59
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Daniel Abebayehu ◽  
Blaise N. Pfaff ◽  
Grace C. Bingham ◽  
Surabhi Ghatti ◽  
Andrew Miller ◽  
...  

Microporous annealed particle (MAP) hydrogels are an exciting new development in biomaterial design. They regulate innate and acquired immunity which has been linked to their ability to evade normal host-material fibrosis. Yet, resident stromal fibroblasts, not immune cells, are the arbiters of the extracellular matrix assembly that characterizes fibrosis. In other idiopathic fibrotic disorders, a fibroblast subpopulation defined by its loss of cell surface Thy-1 expression is strongly correlated with degree of fibrosis. We have previously shown that Thy-1 is a critical αvβ3 integrin regulator that enables normal fibroblast mechanosensing and here, leveraging non-fibrosing MAP gels, we demonstrate that Thy-1-/- mice mount a robust response to MAP gels that remarkably resembles a classical foreign body response. We further find that within the naive, Thy-1+ fibroblast population exists a distinct and cryptic αSMA+ Thy-1- population that emerges in response to IL-1β and TNFα. Employing single-cell RNA sequencing, we find that IL-1β/TNFα-induced Thy-1- fibroblasts actually consist of two distinct subpopulations, both of which are strongly pro-inflammatory. These findings illustrate the emergence of a unique pro-inflammatory, pro-fibrotic fibroblast subpopulation that is central to material-associated fibrosis likely through amplifying local inflammatory signaling.


Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 178
Author(s):  
Nur Zahirah binte M. Yusoff ◽  
Andri K. Riau ◽  
Gary H. F. Yam ◽  
Nuur Shahinda Humaira binte Halim ◽  
Jodhbir S. Mehta

The human corneal stroma contains corneal stromal keratocytes (CSKs) that synthesize and deposit collagens and keratan sulfate proteoglycans into the stromal matrix to maintain the corneal structural integrity and transparency. In adult corneas, CSKs are quiescent and arrested in the G0 phase of the cell cycle. Following injury, some CSKs undergo apoptosis, whereas the surviving cells are activated to become stromal fibroblasts (SFs) and myofibroblasts (MyoFBs), as a natural mechanism of wound healing. The SFs and MyoFBs secrete abnormal extracellular matrix proteins, leading to corneal fibrosis and scar formation (corneal opacification). The issue is compounded by the fact that CSK transformation into SFs or MyoFBs is irreversible in vivo, which leads to chronic opacification. In this scenario, corneal transplantation is the only recourse. The application of cell therapy by replenishing CSKs, propagated in vitro, in the injured corneas has been demonstrated to be efficacious in resolving early-onset corneal opacification. However, expanding CSKs is challenging and has been the limiting factor for the application in corneal tissue engineering and cell therapy. The supplementation of serum in the culture medium promotes cell division but inevitably converts the CSKs into SFs. Similar to the in vivo conditions, the transformation is irreversible, even when the SF culture is switched to a serum-free medium. In the current article, we present a detailed protocol on the isolation and propagation of bona fide human CSKs and the morphological and genotypic differences from SFs.


2021 ◽  
Author(s):  
Phoebe M Kirkwood ◽  
Douglas A Gibson ◽  
Isaac Shaw ◽  
Ross Dobie ◽  
Olympia Kelepouri ◽  
...  

The human endometrium experiences repetitive cycles of tissue wounding characterised by piecemeal shedding of the surface epithelium and rapid restoration of tissue homeostasis. In this study we used a validated mouse model of endometrial repair in combination with three transgenic lines of mice to investigate whether epithelial cells that become incorporated into the newly formed luminal epithelium have their origins in one or more of the mesenchymal cell types present in the stromal compartment of the cycling endometrium. Using scRNAseq we identified a novel population of PDGFRb+ cells that arose in the endometrium in response to endometrial breakdown/repair. These cells expressed genes usually considered specific to epithelial cells and in silico trajectory analysis suggested they arose from stromal fibroblasts and were in transition to becoming epithelial cells. To confirm our hypothesis we used a lineage tracing strategy to compare the fate of stromal fibroblasts (PDGFRa+) and stromal perivascular cells (NG2+). We demonstrate for the first time that stromal fibroblasts can undergo a mesenchyme to epithelial transformation and become incorporated into the re-epithelialised luminal surface of the repaired tissue. This study is the first to discover a novel population of wound-responsive, plastic endometrial stromal fibroblasts that contribute to restoration of tissue integrity during endometrial repair. These findings form a platform for comparisons both to endometrial pathologies which involve a fibrotic response (Ashermans syndrome, endometriosis) as well as other mucosal tissues which have a variable response to wounding.


2021 ◽  
Vol 3 ◽  
Author(s):  
Wangui Mbuguiro ◽  
Adriana Noemi Gonzalez ◽  
Feilim Mac Gabhann

Endometriosis is a common but poorly understood disease. Symptoms can begin early in adolescence, with menarche, and can be debilitating. Despite this, people often suffer several years before being correctly diagnosed and adequately treated. Endometriosis involves the inappropriate growth of endometrial-like tissue (including epithelial cells, stromal fibroblasts, vascular cells, and immune cells) outside of the uterus. Computational models can aid in understanding the mechanisms by which immune, hormone, and vascular disruptions manifest in endometriosis and complicate treatment. In this review, we illustrate how three computational modeling approaches (regression, pharmacokinetics/pharmacodynamics, and quantitative systems pharmacology) have been used to improve the diagnosis and treatment of endometriosis. As we explore these approaches and their differing detail of biological mechanisms, we consider how each approach can answer different questions about endometriosis. We summarize the mathematics involved, and we use published examples of each approach to compare how researchers: (1) shape the scope of each model, (2) incorporate experimental and clinical data, and (3) generate clinically useful predictions and insight. Lastly, we discuss the benefits and limitations of each modeling approach and how we can combine these approaches to further understand, diagnose, and treat endometriosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mickey V. Patel ◽  
Marta Rodriguez-Garcia ◽  
Zheng Shen ◽  
Charles R. Wira

AbstractMucosal integrity in the endometrium is essential for immune protection. Since breaches or injury to the epithelial barrier exposes underlying tissue and is hypothesized to increase infection risk, we determined whether endogenous progesterone or three exogenous progestins (medroxyprogesterone acetate (MPA), norethindrone (NET), and levonorgestrel (LNG)) used by women as contraceptives interfere with wound closure of endometrial epithelial cells and fibroblasts in vitro. Progesterone and LNG had no inhibitory effect on wound closure by either epithelial cells or fibroblasts. MPA significantly impaired wound closure in both cell types and delayed the reestablishment of transepithelial resistance by epithelial cells. In contrast to MPA, NET selectively decreased wound closure by stromal fibroblasts but not epithelial cells. Following epithelial injury, MPA but not LNG or NET, blocked the injury-induced upregulation of HBD2, a broad-spectrum antimicrobial implicated in wound healing, but had no effect on the secretion of RANTES, CCL20 and SDF-1α. This study demonstrates that, unlike progesterone and LNG, MPA and NET may interfere with wound closure following injury in the endometrium, potentially conferring a higher risk of pathogen transmission. Our findings highlight the importance of evaluating progestins for their impact on wound repair at mucosal surfaces.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lidia H. Pulz ◽  
Yonara G. Cordeiro ◽  
Greice C. Huete ◽  
Karine G. Cadrobbi ◽  
Arina L. Rochetti ◽  
...  

AbstractMast cell tumours (MCTs) are the most frequent malignant skin neoplasm in dogs. Due to the difficulty in purifying large numbers of canine neoplastic mast cells, relatively little is known about their properties. A reproducible in vitro model is needed to increase the understanding about the phenotype and functional properties of neoplastic mast cells. In the present study, we describe the establishment of primary cocultures of neoplastic mast cells from canine cutaneous MCTs and cancer-associated fibroblasts. We confirmed the inability of canine neoplastic mast cells to remain viable for long periods in vitro without the addition of growth factors or in vivo passages in mice. Using a transwell system, we observed that mast cell viability was significantly higher when there is cell-to-cell contact in comparison to non-physical contact conditions and that mast cell viability was significantly higher in high-grade than in low-grade derived primary cultures. Moreover, the use of conditioned medium from co-cultured cells led to a significantly higher tumoral mast cell viability when in monoculture. Signalling mechanisms involved in these interactions might be attractive therapeutic targets to block canine MCT progression and deserve more in-depth investigations.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zai-Zai Cao ◽  
Yin-Jie Ao ◽  
Shui-Hong Zhou

AbstractTobacco products cause a variety of cancers, nicotine and carcinogens are two major factors to link the tobacco products and various cancers. The mechanism of tobacco inducing carcinogenesis and promoting cancer progression have been studied for a long time. However, mainstream studies just focus on the mutagenic characteristics of tobacco product and its properties to induce carcinogenesis of epithelial cells. In the past decades, people began to aware of the significant role of tumor stroma in cancer development and progression. Fibroblasts, which is associated with various cancer in all stage of disease progression, are the dominant cell type in the tumor microenvironment. While only a few studies explore the crosstalk between tobacco-induced fibroblasts and surrounding epithelial cells. Our purpose is to systematically review the effects of tobacco products on fibroblasts and further discuss how these effects affect the development of cancer cells.


Author(s):  
Taku Fujiya ◽  
Kiyotaka Asanuma ◽  
Tomoyuki Koike ◽  
Tomoki Okata ◽  
Masahiro Saito ◽  
...  

Barrett's esophagus arises in the process of wound healing in distal esophageal epithelium damaged by gastroesophageal reflux disease. Differentiation of fibroblast into myofibroblasts, a smooth muscle cell-like phenotype and tissue contraction are crucial processes in wound healing. No study has evaluated mechanism by which luminal esophageal nitric oxide (NO) affect Rho-associated coiled-coil forming protein kinase (Rho-ROCK) signaling pathway, a key factor of tissue contraction, in stromal fibroblasts to develop Barrett's esophagus. Using esophageal fibroblasts, we performed collagen-based cell contraction assays and evaluated influence of Rho-ROCK signaling in the exposure to acidic bile salts and NOC-9, which is an NO donor. We found that enhanced cell contraction induced by acidic bile salts was inhibited by NO, accompanied by decrease in phosphorylated myosin light chain expression and stress fiber formation. NO directly S-nitrosylated GTP-RhoA and consequently blocked Rho-ROCK signaling. Moreover, exposure to NO and Y27632, a Rho-ROCK signaling inhibitor, decreased a-SMA expression and increased bone morphogenetic protein 4 (BMP4) expression and secretion. These findings could account for the increased expression of BMP4 in the columnar epithelial cells and stromal fibroblasts in human Barrett's esophagus. NO could impair wound healing by blocking the Rho-ROCK signaling pathway and promote development of Barrett's esophagus.


2021 ◽  
Vol 131 (21) ◽  
Author(s):  
Tatsuya Dokoshi ◽  
Jason S. Seidman ◽  
Kellen J. Cavagnero ◽  
Fengwu Li ◽  
Marc C. Liggins ◽  
...  

Author(s):  
Qianyao Tang ◽  
Bo Cheng ◽  
Rongyang Dai ◽  
Ronghao Wang

Prostate cancer (PCa) lists as the second most lethal cancer for men in western countries, and androgen receptor (AR) plays a central role in its initiation and progression, which prompts the development of androgen deprivation therapy (ADT) as the standard treatment. Prostate tumor microenvironment, consisting of stromal cells and extracellular matrix (ECM), has dynamic interactions with PCa epithelial cells and affects their growth and invasiveness. Studies have shown that both genomic and non-genomic AR signaling pathways are involved in the biological regulation of PCa epithelial cells. In addition, AR signaling in prostate stroma is also involved in PCa carcinogenesis and progression. Loss of AR in PCa stroma is clinically observed as PCa progresses to advanced stage. Especially, downregulation of AR in stromal fibroblasts dysregulates the expression levels of ECM proteins, thus creating a suitable environment for PCa cells to metastasize. Importantly, ADT treatment enhances this reciprocal interaction and predisposes stromal cells to promote cell invasion of PCa cells. During this process, AR in PCa epithelium actively responds to various stimuli derived from the surrounding stromal cells and undergoes enhanced degradation while elevating the expression of certain genes such as MMP9 responsible for cell invasion. AR reduction in epithelial cells also accelerates these cells to differentiate into cancer stem-like cells and neuroendocrine cells, which are AR-negative PCa cells and inherently resistant to ADT treatments. Overall, understanding of the cross talk between tumor microenvironment and PCa at the molecular level may assist the development of novel therapeutic strategies against this disease. This review will provide a snapshot of AR’s action when the interaction of stromal cells and PCa cells occurs.


Sign in / Sign up

Export Citation Format

Share Document